Cho a,b,c,d\(\in\)N* ,a2+c2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)CMR:
\(\frac{a^{2016}}{b^{1008}}+\frac{c^{2016}}{d^{1008}}=\frac{2}{\left(b+d\right)^{1008}}\)
A=\(\frac{[\left(\frac{2}{1000}-\frac{3}{2002}\right)\frac{1001}{17}+\frac{33}{44}]}{[\left(\frac{7}{1008}+\frac{11}{2016}\right)\frac{1008}{25}+\frac{1009}{2016}]}\)
\(\left[\left(\frac{2}{1001}-\frac{3}{2002}\right).\frac{1001}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1008}+\frac{11}{2016}\right).\frac{1008}{25}+\frac{1009}{2016}\right]\)
giải hộ vs :((( tỉ mỉ nha !
Lm đúng mk tick cho
1. Cho a,b,c,x,y,z khác 0 thỏa mãn:
\(\frac{7cy-5bz}{x}=\frac{2az-7cx}{y}=\frac{5bx-2ay}{z}\)
CMR: \(\frac{2a}{x}=\frac{5b}{y}=\frac{7c}{z}\)
2.Cho a,b,c,x,y,z khác 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
3.Cho a,b,c thỏa mãn \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
CMR: 4(a-b)(b-c)=(a-c)2
4. Cho a,b,c thỏa mãn:\(\frac{a}{x}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR: 4(a-b)(b-c)=(a-c)2
5. Cho a,b,c thỏa mãn:
\(\frac{a}{-2017}=\frac{b}{-2016}=\frac{c}{-2015}\)
CMR: 4(a-b)(b-c)=(a-c)2
6. Cho a,b,c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị biểu thức A=\(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
Bài 1: Tính giá trị biểu thức
A= \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
B= \(\frac{\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
C= \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}}\)
D= \(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.4000}}\)
Bài 2: Tìm x, biết:
a) \(\frac{x+1}{2014}+\frac{x+2}{2013}+...+\frac{x+1007}{1008}=\frac{x+1008}{1007}+\frac{x+1009}{1006}+...+\frac{x+2014}{1}\)
b) \(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-1}{4}\)
Các bạn làm hết giúp mik nha! ^ ^
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính \(P=\frac{\left(ab+bc+ca\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}\)
a ) S = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\) và P = \(\frac{1}{1008}\) + \(\frac{1}{1009}+\frac{1}{1010}+........+\frac{1}{2014}+\frac{1}{2015}\)
Tính (S-P)^2016.
b, Tìm x,y biết : |x - 5 | + |1- x | = \(\frac{12}{\left|y+1\right|+3}\)
c, Tìm số tự nhiên x thoả mãn : \(3^x+4^x=5^x\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1, Cho \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\). Tính M= 4* [ a-b] * [ b-c]- [c-a]2
2, Cho \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\) biết a+b+c khác 0. Tính M=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
3, TÍnh giá trị biểu thức : M= \(\frac{y^2}{\left[z+t+x\right]^2}+\frac{z^2}{\left[t+x+y\right]^2}+\frac{t^2}{\left[x+y+z\right]^2}+\frac{x^2}{\left[y+z+t\right]^2}\)
Nhờ mn giúp đỡ, mk đang gấp