Đố: Cho \(\Delta ABC\), biết \(BC=a,AC=b,AB=c,\widehat{A}=\alpha,\widehat{B}=\beta,\widehat{C}=\gamma\) chứng minh:
a)\(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}\) b) \(a^2=b^2+c^2-2bc\cos\alpha\)
c) \(\frac{a-b}{a+b}=\frac{\tan\left[\frac{1}{2}\left(\alpha-\beta\right)\right]}{\tan\left[\frac{1}{2}\left(\alpha+\beta\right)\right]}\)
d) Biết \(s=\frac{a+b+c}{2}\). Chứng minh \(\frac{\cot\frac{\alpha}{2}}{s-a}=\frac{\cot\frac{\beta}{2}}{s-b}=\frac{\cot\frac{\gamma}{2}}{s-c}\)
1) Cho: \(\tan\alpha=\frac{1}{2}\). Tính \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)
2) Cho: \(\cos\beta=2\sin\beta.\) Hãy tính: \(\sin\beta.\cos\beta\)
3)Chứng minh hệ thức:
a/ \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b/ \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos\alpha\)
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
cho \(\hept{\begin{cases}x;y;z>0\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{4}\end{cases}}\)Tìm \(Min_P=\frac{1}{\alpha a+\beta b+\gamma c}+\frac{1}{\beta a+\gamma b+\alpha c}+\frac{1}{\gamma a+\alpha b+\beta c}\)với \(\alpha;\beta;\gamma\in\)N*
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
CMR: \(\cos\left(\beta-\alpha\right)=\cos\alpha.\cos\beta+\sin a.\sin\beta\)
Giúp mik với
Cho tam giác ABC cân tại A.Đặt \(\widehat{A}\)=2\(\beta\)C/m
a)\(\cos2\beta=\cos^2\beta\sin^2\beta\)
b)\(\sin2\beta=2\sin\beta\cos\beta\)
VỚI \(0\)ĐỘ\(< \alpha1< \alpha2< 90\)ĐỘ CHỨNG MINH RẰNG
A.\(\sin\alpha1< \sin\alpha2\)VÀ \(\cos\alpha1>\cos\alpha2\)
B. VỚI \(\alpha+\beta< 45\)ĐỘ. CHỨNG MINH : \(\sin\left(\alpha+\beta\right)\)\(=\sin\alpha\cos\beta\)\(+\cos\alpha\sin\beta\)
Cho \(\Delta ABC\) có 3 góc nhọn biết BC = a; CA = b; AB = c, đường cao AH.CM
a) \(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin C}\)
b) SABC = \(\frac{1}{2}bc.\sin\alpha\)