CHO \(\frac{a}{b}=\frac{c}{d}\)và \(b+d\ne0\).CHỨNG TỎ : \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}CMR\)
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)CM
a)\(\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
b)\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
c)\(\left(a+2c\right)\cdot\left(b+d\right)=\left(a+c\right)\cdot\left(b+2d\right)\)
giúp mk vs
\(\frac{2x-3y}{2}=\frac{4y-2z}{3}=\frac{3z-4x}{4}\) và 3x +2y+z=17
Cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng
\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d^2\right)}=\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR:
a) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Cho \(\frac{a}{b}=\frac{c}{d}.CMR:\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b)\(\frac{a,d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho \(a.b=c^2\)chứng minh : \(\frac{a}{b}=\frac{\left(2a+3c\right)^2}{\left(2c+3b\right)^2}\)
Cho\(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh
1,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a.c}{b.d}\)
2,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a^2-c^2}{b^2-d^2}\)
\(3,\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
\(4,\left(b+d\right).c=\left(c+c\right).d\)
\(5,\frac{4.a-12.b}{8.a+11.b}=\frac{4.c-12.d}{8.c+11.d}\)
\(6,\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(7,\frac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\frac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)