đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = b.k; c = d.k
\(\frac{ab}{cd}=\frac{b^2k}{d^2.k}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( Vì cùng bằng b2/ d2 )
Bạn cũng có thể làm như thế này !
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
\(\rightarrow\frac{a}{b}\times\frac{b}{d}=\left(\frac{a+b}{c+d}\right)^2\)
\(\rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (dpcm)