\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)
\(\frac{a}{b}=\frac{c}{d}.cm:\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
\(\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng:
\(\frac{a+c}{b+d}=\frac{a-2c}{b-2d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
a) Chứng minh \(\frac{3a+2c}{3d+2d}=\frac{3c-5a}{3d-5b}\)
b) Chứng minh \(\frac{a^2}{b^2}=\frac{2c^2-ac}{2d^2-bd}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
chứng minh (a+2c)(b+d) = (a+c)(b+2d)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:\(\frac{a^2}{b^2}=\frac{5a^2+2c^2}{5b^2+2d^2}\)
1.Chứng minh:
\(\frac{a}{a+2b}=\frac{c}{c +2d}\)
2. Chứng minh:
\(\frac{b}{2a-b}=\frac{d}{2c-d}\)