Cho\(\frac{a}{b}=\frac{c}{d}\)CMR\(\frac{5a^2+c^2}{5b^2+d^2}.\frac{a^2+b^2}{c^2+d^2}=\frac{a^2}{d^2}\)
ai trả lời đúng và nhanh mk t.i.c.k nhé !
Bài 1 :
Cho tam giác ABC có chu vi bằng 24cm và các cạnh a, b, c tỉ lệ với 3, 4, 5.
a) Tính các cạnh của tam giác ABC
b) Tam giác ABC là tam giác gì
Bài 2 :
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh
a) \(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
b) \(\frac{a^2}{b^2}=\frac{a^2-ac}{b^2-bd}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
chứng minh:\(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
Cho:
\(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\)
Chứng minh a/
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)
b/
\(\frac{ac}{bd}=\frac{5a^2+7c^2}{5b^2+7d^2}\)
Ch\(\frac{a}{b}=\frac{c}{d}\)CMR:
a, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
b, \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
1 a) 2a=3b:5b=7c và 3a +5c-7b=30
b)\(\frac{x-1}{2}=\frac{x+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
c)3x=4y=6z và x-3y+2z=70
d)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=20
2 cho \(\frac{a}{b}=\frac{c}{d}\)và a;b;c;d\(\ne\)0
a)\(\frac{a}{a-b}\frac{c}{d}\)
b)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
g)\(\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3d}\)
h)\(\frac{2a+3b}{2a-3d}=\frac{2c+3d}{2c-3d}\)
Cho \(\frac{a}{b}=\frac{c}{d}CMR:\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
Cho \(\frac{a}{b}=\frac{c}{d}CMR:\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
Cho \(\frac{a}{b}=\frac{c}{d}CMR:\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)