đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
a, ta có
+) \(\frac{ma+nc}{mb+nd}=\frac{mck+nc}{mdk+nd}=\frac{c\left(mk+n\right)}{d\left(mk+n\right)}=\frac{c}{d}\)
+) \(\frac{pa+qc}{pb+qd}=\frac{pck+qc}{pdk+qd}=\frac{c\left(pk+q\right)}{d\left(pk+q\right)}=\frac{c}{d}\)
Vậy...........
b, Ta có
+) \(\frac{ma+nd}{mc+nd}=\frac{mck+ndk}{mc+nd}=\frac{k\left(mc+nd\right)}{mc+nd}=k\)
+) \(\frac{pa+qb}{pc+qd}=\frac{pck+pdk}{pc+qd}=\frac{k\left(pc+qd\right)}{pc+qd}=k\)
Vậy.............
c, ta có
+) \(\frac{ma+nc}{pa+qc}=\frac{mck+nc}{pck+qc}=\frac{c\left(mk+n\right)}{c\left(pk+q\right)}=\frac{mk+n}{pk+q}\)
+) \(\frac{mb+nd}{pb+qd}=\frac{mdk+nd}{pdk+qd}=\frac{d\left(mk+n\right)}{d\left(pk+q\right)}=\frac{mk+n}{pk+q}\)
vậy.........
d, ta có
+) \(\frac{ma+nb}{pa+qb}=\frac{mck+ndk}{pck+qdk}=\frac{k\left(mc+nd\right)}{k\left(pc+qd\right)}=\frac{mc+nd}{pc+qd}\)
Vậy.........