\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(=\frac{a}{d}=\frac{c}{b}=\frac{b}{c}\)
\(=\frac{a+c+b}{d+b+c}\)
\(\Rightarrow\frac{a}{d}=\frac{c}{b}=\frac{b}{c}=\left(\frac{a+b+c}{b+d+c}\right)^3\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Cho \(\frac{a}{2003}=\frac{a}{2004}=\frac{c}{2005}\)
Chứng minh rằng: 4(a - b)(b - c) = (c - a)\(^2\)