\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)
\(\Rightarrow\left(a+b\right)\left(a+d\right)=\left(b+c\right)\left(c+d\right)\)
\(\Rightarrow\left(a+b\right)a+\left(a+b\right)d=\left(b+c\right)c+\left(b+c\right)d\)
\(\Rightarrow a^2+ab+ad+bd=bc+c^2+bd+cd\)
\(\Rightarrow\left(a^2+ab+ad\right)+bd=\left(c^2+bc+cd\right)+bd\)
\(\Rightarrow a.\left(a+b+d\right)=c.\left(c+b+d\right)\)
xét a< c =>a.(a+b+d)<c(c+b+d)
xét a>c =>a.(a+b+d)>c(c+b+d)
=>a=c
=>đpcm