\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)CMR:c=0\)
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\) . Chứng minh c=0
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{3\cdot b+c}=\frac{b}{a\cdot3+c}=\frac{c}{3\cdot a+b}\)\(\left(a+b+c\ne0\right)va\left(a;b;c\ne0\right)\)
Tinh \(\frac{3\cdot b+c}{a}+\frac{a+3\cdot c}{b}+\frac{3\cdot a+b}{c}\)
\(Cho\)\(abc\ne0,và\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right).\)
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
Cho tỉ lệ thức:\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chứng minh rằng:c=0
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0;b\ne c\right)\)) chứng minh rằng : \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0,b\ne c\right)\).Chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)