Ta có : \(\frac{a+b}{2008}=\frac{b+c}{2009}=\frac{c+a}{2010}=\frac{a+b-\left(b+c\right)}{2008-2009}=\frac{b+c-\left(c+a\right)}{2009-2010}=\frac{c+a-\left(a+b\right)}{2010-2008}=\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}\)
Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}=k\Rightarrow a-c=-k;b-a=-k;c-b=2k\)
Ta lại có : \(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)\(\Rightarrow-4k\times\left(-k\right)=\left(2k\right)^2\)\(\Rightarrow4k^2=4k^2\)
Vế trái đúng bằng vế phải \(\Rightarrow\)\(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)