Cho a' , b , b' , c là 4 số khác 0 và \(\frac{a}{a'}+\frac{b'}{b}=1và\frac{b}{b'}+\frac{c'}{c}=1.\)Chứng minh rằng abc + a'b'c' = 0
Cho a(y + z) = b(z + x) = c(x + y)
Chứng minh rằng: \(\frac{y-z}{a\left(b-c\right)}\)\(=\frac{z-x}{b\left(c-a\right)}\)\(=\frac{x-y}{c\left(a-b\right)}\)
Cố gắng trả lời nhanh giúp mình nhé
Biết \(\frac{a}{a'}=\frac{b}{b'}=1;và\frac{b}{b'}=\frac{c'}{c}\). Chứng minh rằng \(abc+a'b'c'=0\)
Cho \(\frac{a}{a'}+\frac{b'}{b}=1\) và \(\frac{b}{b'}+\frac{c'}{c}=1\)chứng minh abc+a'b'c'=0
Biết \(\frac{a}{a'}+\frac{b}{b'}=1\) và \(\frac{b}{b'}+\frac{c'}{c}=1\).Chứng minh rằng : abc+a'b'c'=0
Cho \(\frac{a}{c}=\frac{c}{b}\)chứng minh rằng \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Giúp mình với đang cần gấp lắm!
Ai nhanh nhất mình cho 1 tick đúng nhé!
Biết \(\frac{a}{a'}+\frac{b'}{b}=1\) và \(\frac{b}{b'}=\frac{c'}{c}\).Chứng minh rằng:abc+a'b'c'=0
Chứng minh rằng nếu 3 số a; b; c thỏa mãn a+b+c=2016 và\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) thì trong3 số đó phải có 1 số bằng 2016
GIÚP MÌNH VỚI! PLEASE!
Biết \(\frac{a}{a'}\)+\(\frac{b}{b'}\)=1 và \(\frac{b}{b'}\)+\(\frac{c'}{c}\)=1.Chứng minh rằng:abc+a'b'c'=0