Với đề này thì bạn chỉ cần áp dụng tính chất của dãy tỉ số bằng nhau
Sau đó sẽ có thêm một tỉ số mới và bạn lấy tỉ số đó so sánh vs tỉ số cũ là được
Chúc bạn học tốt
@@
Với đề này thì bạn chỉ cần áp dụng tính chất của dãy tỉ số bằng nhau
Sau đó sẽ có thêm một tỉ số mới và bạn lấy tỉ số đó so sánh vs tỉ số cũ là được
Chúc bạn học tốt
@@
Cho \(\frac{a-b}{b-c}\)= \(\frac{c-d}{d-a}\). Chứng minh rằng a = c hoặc a+c = b+d
Cho bốn số dương a,b,c,d. Chứng minh rằng:
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a,b,c,d là 4 sô nguyên dương bất kì hãy chứng minh rằng: $A=\frac{a}{a+b+c}+\frac{b}{a+d+b}+\frac{c}{b+c+d}+\frac{d}{a+c+d}
Cho a,b,c,d là các số dương. Chứng minh rằng: \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Cho a,b,c,d là các số dương. Chứng minh rằng: \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Giúp mình với Toán 8!!!!!!!!!!
với các số a,b,c,d dương hãy chứng minh
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}>2\)
HOẶC BẰNG 2
Với a,b,c,d dương, chứng minh rằng \(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
a, cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
chứng minh rằng \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
b, tìm A biết rằng \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
c, chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a,b,c;,d\ne0;a\ne b;c\ne d\right)\)
suy ra được
a,\(\frac{a}{a-b}=\frac{c}{c-d}\)
b, \(\frac{a+b}{b}=\frac{c+d}{d}\)
cho a,b,c,d là các số nguyên dương khác nhau thỏa mãn: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\). chứng minh rằng tích abcd là một số chính phương