\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)=> a = -b hoặc ab +c(a+b+c) =0
+ a = -b => thay => dpcm
+ab + c(a+b+c) =0 =>(a+c)(b+c) =0 => a =-c hoạc b =-c thay => dpcm
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)=> a = -b hoặc ab +c(a+b+c) =0
+ a = -b => thay => dpcm
+ab + c(a+b+c) =0 =>(a+c)(b+c) =0 => a =-c hoạc b =-c thay => dpcm
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng \(\frac{1}{a^{1995}}+\frac{1}{b^{1995}}+\frac{1}{c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Giải chi tiết jum vs.........
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng \(\frac{1}{a^{1995}+b^{1995}+c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh \(\frac{1}{a^{1995}}+\frac{1}{b^{1995}}+\frac{1}{c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Cho 3 số a, b, c khác 0 thỏa mãn:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Tính P=\(\left(a^{23}+b^{23}\right)\left(b^5+c^5\right)\left(a^{1995}+c^{1995}\right)\)
\(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
Giải phương trình nghiệm nguyên dương :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1995}\)
Giải các bất phương trình sau:
a) \(\frac{x-5}{2005}+\frac{x-15}{1995}< \frac{x-2005}{5}+\frac{x-1995}{15}\)
b)\(\frac{1987-x}{15}+\frac{1988-x}{16}+\frac{27+x}{1999}+\frac{28+x}{2000}>4\)
Giải phương trình:
a,\(\frac{2-x}{2016}\)-1=\(\frac{1-x}{2017}\)-\(\frac{x}{2018}\)
b,\(\frac{x-19}{1999}\)+\(\frac{x-23}{1995}\)+\(\frac{x+82}{700}\)=5
c,x^3-3*x^2+4=0
Số nào lớn hơn trong hai số : \(E=\frac{1995^3}{1995^2-1994};F=\frac{1996^3-1}{1996^2+1997}\)