Cho đa thức f(x) = ax^2 +bx + c có giá trị nguyên với mọi giá trị của x thì các hệ số a, b , c là các số nguyên
Cho \(f\left(x\right)=ax^2+bx+c.\) Biết \(f\left(0\right);f\left(1\right);f\left(2\right)\) đều là các số nguyên .
CM f(x) luôn nhận giá trị nguyên với mọi x nguyên .
cho đa thức f(x)=ax^2+bx+c với a,b,c là các số thực. biết f(0),f(1),f(2) có giá trị nguyên. chứng minh 2a,2b có giá trị nguyên
biết đa thức f(x)=ax^2+bx+c có gia trị nguyên với mọi giá trị của x.CMR
a) c và 2a là các số nguyên
b)khi a =1;b=3;c=4 thì ko có số nguyên x nào để f(x)=2017
Cho đa thức f(x) = ax^2 + bx + c có giá trị nguyên với mọi x . Chứng minh rằng 2a , 2b , c là các số nguyên
Cho đa thức:f(x)=\(ax^2\)+bx+c với a,b,c là các số thực.Biết f(0),f(1),f(2) có giá trị nguyên.Chứng minh 2a,2b có giá trị nguyên
biết đa thức f(x)=ax2+bx+c có giá trị nguyên với mọi giá trị của x . chứng minh rằng
a) c và 2a là các số nguyên
b) khi a =1 ;b=3;c=4 thì không có số nguyên x nào để f(x)=2017
cho 1 like cho ai giải được
cho đa thức f(x) = ax2 + bx +c với a,b,c là các số thực .Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a, 2b có giá trị nguyên
CMR: nếu giá trị của biểu thức \(f\left(x\right)=ax^2+bx+c\) chia hết cho 2007 với mọi x nguyên (a,b,c) là số nguyên thì các hệ số a,b,c đều chia hết cho 2007