\(E=\frac{x}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\)
Vì x>1 nên \(\sqrt{x}-1>0\Rightarrow\frac{1}{\sqrt{x}-1}>0\)
Áp dụng BĐT Cô-si cho 2 số dương ta được:
\(\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}\ge2\)
\(\Rightarrow E\ge2+2=4\)
Dấu "=" xảy ra khi \(\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\Leftrightarrow x=4\)
Vậy .....
\(E=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
Với x nguyên,để A nguyên thì: \(\frac{1}{\sqrt{x}-1}\)nguyên \(\Rightarrow\sqrt{x}-1\)là ước của \(1\)
Mà \(\sqrt{x}-1>0\)nên \(\sqrt{x}-1=1\Rightarrow x=4\)
vậy để E nguyên thì x=4
Xét biểu thức \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\)
Với x > 1 nên ta áp dụng bất đẳng thức Cauchy ta có :
\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge2\sqrt{\frac{x}{\sqrt{x}-1}\cdot4\left(\sqrt{x}-1\right)}=2\sqrt{4x}=4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\sqrt{x}-4\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}\ge4\)
Đẳng thức xảy ra khi x = 4
=> MinE = 4 <=> x = 4