Cho đường tròn (O;R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB)
Vẽ đường kính DE. Chứng minh rằng:
a)MA × MB=MC ×MD.
b) tứ giác ABCE là hình thang cân.
C)MA^2+MB^2+MC^2 + MD^2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc. chứng minh MA2 + MB2+MC2+MD2 không đổi
Cho (o;R) và một điểm M bên trong đường tròn (o). Qua M kẻ 2 dây AB và CD vuông góc với nhau ( c thuộc cung nhỏ AB). vẽ đường kính DE. chứng minh
a, MA.MB=MC.MD
b, tứ giác ABEC là hình thang cân
c, tổng MA^2+MB^2+MC^2+MD^2; AB^2+CD^2 ko đổi
d, tìm vị trí của AB và CD để AC+BD, diện tích tg ABCD min, max
Cho điểm M nằm bên trong (O;R). Qua M kẻ 2 dây AB và CD vuông góc với nhau. CMR: Nếu M cố định, 2 dây AB và CD thay đổi nhưng vẫn vuông góc với nhau thì AB2 + CD2 luôn không thay đổi.
Cho (O;R) và điểm I cố định nằm trong đường tròn (OI=d<R) , AC và BD là 2 dây cung vuông góc với nhau tại I
a, CMR: \(AB^2+CD^2=AD^2+BC^2=4R^2\)
b, Tính tổng bình phương 4 cạnh và tính tổng bình phương 2 đường chéo của tứ giác ABCD theo R và d
c, Gọi M , N là trung điểm AB và CD . CMR: \(IM\perp CD\)và \(IN\perp AB\)
d, CMR: Tứ giác OMIN là hình bình hành
e, CMR: Khi 2 dây cung AC và BD thay đổi và vuông góc với nhau tại I thì MN luôn đi qua 1 điểm cố định
Cho đường tròn (O;R), 2 dây cung AB và CD cắt nhau tại điểm M nằm bên trong đường tròn.
a) Cm rằng nếu AB=CD thì MA=MC
b) Trường hợp AB>CD. Hãy so sánh khoảng cách từ M đến trung điểm của các dây AB, CD (vẽ hình luôn nha)
Cho đường tròn ( O;R ), M là điểm nằm trong đường tròn. Qua M kẻ 2 dây cung AB và CD. Chứng minh rằng:
MA . MB = MC . MD=\(R^2-d^2\)( trong đó d=MO)
Cho điểm M ở trong đường tròn (O;R). Qua M hãy dựng 2 dây AB và CD vuông góc với nhau tại M sao cho AB + CD lớn nhất.