Cho đường tròn tâm O và đường thẳng d không giao nhau với đường tròn. Trên d lấy M bất kì, qua M kẻ 2 tiếp tuyến MA, MB(A,B là các tiếp điểm). Gọi H là hình chiếu của O lên d, AB cắt OH và OM lần lượt ở I và K.
a, Chứng minh: r^2=OI.OH=OK.OM ( r là bán kính đường tròn tâm O)
b, Chứng minh khi M di chuyển trên đường thẳng d thì đường tròn ngoại tiếp tam giác MIK luôn đi qua 2 điểm cố định