Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Hoàng Huyền

Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là trung điểm của $OA$; qua $C$ kẻ đường thẳng vuông góc với $OA$ cắt đường tròn đó tại hai điểm phân biệt $M$ và $N$. Trên cung nhỏ $BM$ lấy điểm $K$ ($K$ khác $B$ và $M$). Gọi $H$ là giao điểm của $AK$ và $MN$. Chứng minh rằng tứ giác $BCHK$ là tứ giác nội tiếp.     

Phạm Đoan Trang
14 tháng 5 2021 lúc 8:33

   Ta có: góc AKP = 90độ ( Góc nội tiếp chắn nửa đường tròn)

Mà AK giao MN tại H =) Góc HKP = 90độ (1)

  Lại có: MC vuông góc AB =) Góc HCB = 90độ (2)

Từ (1) và (2) =) góc HKP + góc HCP = 180độ

Mà 2 góc đối nhau

=) Tứ giác BCHK nội tiếp

Khách vãng lai đã xóa
Nguyễn Thế Hải
14 tháng 5 2021 lúc 9:54

undefined

Khách vãng lai đã xóa

Các câu hỏi tương tự
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết