Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là trung điểm của $OA$; qua $C$ kẻ đường thẳng vuông góc với $OA$ cắt đường tròn đó tại hai điểm phân biệt $M$ và $N$. Trên cung nhỏ $BM$ lấy điểm $K$ ($K$ khác $B$ và $M$). Gọi $H$ là giao điểm của $AK$ và $MN$. Chứng minh rằng tứ giác $BCHK$ là tứ giác nội tiếp.
Ta có: góc AKP = 90độ ( Góc nội tiếp chắn nửa đường tròn)
Mà AK giao MN tại H =) Góc HKP = 90độ (1)
Lại có: MC vuông góc AB =) Góc HCB = 90độ (2)
Từ (1) và (2) =) góc HKP + góc HCP = 180độ
Mà 2 góc đối nhau
=) Tứ giác BCHK nội tiếp