Xét tứ giác ACED có
H là trung điểm của AE
H là trung điểm của CD
Do đó: ACED là hình bình hành
mà AE\(\perp\)CD
nên ACED là hình thoi
Xét tứ giác ACED có
H là trung điểm của AE
H là trung điểm của CD
Do đó: ACED là hình bình hành
mà AE\(\perp\)CD
nên ACED là hình thoi
cho tam giác ABC nội tiếp đường tròn (O), từ B vẽ đường vuông góc AB tại B cắt (O) tại D
a) Chứng tỏ AD là đường kính của (O)
b) Tính góc ACD
c) Gọi H là trực tâm tam giác ABC, tứ giác BHCD là hình gì? Vì sao ?
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
Cho (O ; R ) dây BC khác đường kính . Hai tiếp tuyến của ( O ; R ) tại BC cắt nhau tại A . Kẻ đường kính CD ; kẻ BH vuông góc với CD tại H
a, CMR : 4 điểm A ; B ; O ; C cùng thuộc 1 đường tròn
b, Gọi K là giao điểm của AO và BC . CMR : AO vuông góc với BC
c , CMR : BC là tia phân giác của |ABH
d, gọi I là giao điểm của AD và BH ; E là giao điểm của BD và AC . CMR : IH = IB
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. a) Chứng minh 4 điểm C,H,B,K cùng thuộc 1 đường tròn. b) Cm KH//AC. c) Cm BH.AD=AH.BD
Cho tam giác ABC, kẻ đường cao AH. Gọi I, K là các điểm đối xứng của H qua các cạnh AB,AC. Biết AH=2√5, BH=4,CH=5cm. a.tìm tâm và bán kính của đường tròn đi qua ba đỉnh A,B,C. b. Chứng minh H nằm trên đường tròn đường kính IK, từ đó suy ra các điểm B,C thuộc miền ngoài của đường kính IK. Giúp em một bài hoàn chỉnh có cả hình để em tham khảo với mn ơi
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
2/ Cho tam giác ABC nhọn nội tiếp trong đường tròn (O;R). Gọi H là giao điểm của 2 đường cao BE và CF.
a) C/m 4 điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm K của đường tròn đi qua 4 điểm A,E,H,F
b) C/m \(\widehat{KEI}\) =90o
cho hình vuông ABCD, gọi O là giao điểm 2 đường chéo, OA= 3 căn 2 cm. Vẽ đường tròn tâm B bán kính 6cm. Hỏi trong 4 điểm O, A, C, D điểm nào nằm trong, trên, ngoài đường tròn?
Cho tam giác nhọn abc nội tiếp đường tròn, các đường cao be , cf cắt nhau tại h . kẻ đường kính ak A các tam giác abk và ack là tam giác gì vì sao B chứng minh tứ giác bhck là hình bình hành C kẻ oi vuông góc với bc tại i . cm h,i,k thẳng hàng