Cho tam giác ABC, kẻ đường cao AH. Gọi I, K là các điểm đối xứng của H qua các cạnh AB,AC. Biết AH=2√5, BH=4,CH=5cm. a.tìm tâm và bán kính của đường tròn đi qua ba đỉnh A,B,C. b. Chứng minh H nằm trên đường tròn đường kính IK, từ đó suy ra các điểm B,C thuộc miền ngoài của đường kính IK. Giúp em một bài hoàn chỉnh có cả hình để em tham khảo với mn ơi
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
HB/HA=HA/HC
=>ΔHBA đồng dạng với ΔHAC
=>góc HBA=góc HAC
=>góc HBA+góc HCA=90 độ
=>góc BAC=90 độ
=>ΔBAC nội tiếp đường tròn đường kính BC
Tâm là trung điểm của BC
Bán kính là R=BC/2=4,5
b: Gọi giao của HI với AB là M, HK với AC là N
H đối xứng I qua AB
=>HI vuông góc AB tại M
H đối xứng K qua AC
=>HK vuông góc AC tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>góc MHN=90 độ
=>góc IHK=90 độ