Cho đường tròn tâm O có đường kính AB. Trên tiếp tuyến tại A của đường tròn (O), lấy điểm M khác điểm A. Vẽ tiếp tuyến thứ hai MC của đường tròn (O) (C là tiếp điểm). MB cắt đường tròn (O) tại D (D khác B). Gọi H là giao điểm của OM và AC.
a) Chứng minh góc ABH = góc CAD.
b) Gọi N là giao điểm của AC và BD. Chứng minh \(\frac{1}{MD}+\frac{1}{MB}=\frac{2}{MN}.\)