Cho đường tròn tâm O bán kính R trên 1 dây BC cố định. Trên đường tròn lấy 1 điểm A, A không trùng với B và C. Gọi G là trọng tâm của tam giác ABC.CMR Khi A di động trên đường tròn tâm O thì G cũng di động trên 1 đường tròn cố định
Cho đường tròn tâm O bán kính R và 1 dây cung BC cố định. A là điểm di động trên cung lớn BC. Gọi I là trung điểm AC.
a/ Chứng minh: I di động trên 1 đường tròn cố định
b/ Qua I vẽ đường thẳnd vuông góc với AB. Chứng minh: d luôn đi qua 1 điểm cố định
c/ Xác định vị trí A để diện tích tam giác ABC lớn nhất
d/ Trong tâm G tam giác ABC di động trên 1 đường cố định
cho đuường tròn tâm O bán kính R ,dây BC cố định (BC <2R ) .khi điểm A di động trên cung lớn BC thì trộng tâm G của tam giác ABC chạy trên đường nào ?
1/ Cho đ/tròn (O,R),dây BC cố định,A tùy ý trên cung lớn BC.BM,CN là 2 đ/cao của tam giác ABC. Khi A chuyển động trên cung lớn BC thì tâm I của đ/tròn ngoại tiếp tam giác AMN chạy trên đường nào?
2/ Cho đ/tròn (O,R),dây BC cố định,A di động trên cung lớn BC. Khi A di động trên cung lớn BC thì trực tâm H cảu tam giác ABC chạy trên đường nào?
Cho đường tròn (O;R) và dây Bc cố định không đi qua O. Điểm M đi động trên (O;R). Gọi G là trọng tâm tam giác MBC. CMR: G nằm trên một đường tròn cố định
cho đường tròn O;R cố định và dây BC cố định . trên BC lấy A cố định. M là điểm thay đổi trên đường tròn O . Cm trọng tâm G của Mac luôn nằm trên 1 đường tròn cố định
Cho đường tròn (O;R). Từ điểm A nằm bên ngoài đường tròn kẻ các tiếp tuyến AC, AC với đường tròn (B và C là các tiếp điểm). Gọi H là trung điểm của BC
a. Chứng minh 3 điểm A,B,C,O thuộc 1 đường tròn
b. Chứng minh 3 điểm A,H,O thẳng hàng.Kẻ đường kính BD của đường tròn (O;R). Vẽ CK vuông góc với BD. Chứng minh \(AC.CD=CK.AO\)
c. Gọi giao điểm của AO với đường tròn tâm O là N. Chứng minh N là tâm đường tròn nội tiếp tam giác ABC
d.Khi A di động trên tia By cố định, gọi M là trực tâm của tam giác ABC. Chứng minh M di động trên 1 đường cố định
Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di
động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ
đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD
cắt d tại E, F.
1) Chứng minh tứ giác CDFE nội tiếp được đường tròn
2) Gọi M là trung điểm của EF và I là tâm đường tròn ngoại tiếp tứ giác CDFE .
Chứng minh : AB = 2.IM
3) Gọi H là trực tâm tam giác DEF . Chứng minh khi điểm C di động trên (O) thì điểm H luôn
chạy trên một đường tròn cố định.
Cho đường tròn tâm O bán kính R và điểm A thuộc đường tròn. Trên tiếp tuyến tại A lấy 1 điểm K cố định. Một đường thẳng (d) thay đổi đi qua K và không đi qua tâm O cắt (O) tại B và C ( B nằm giữa C và K). Gọi M là trung điểm BC.
1.CM: A,O,M,K thuộc 1 đường tròn
2.Vẽ đường kính AN của đường tròn tâm O, đường thẳng qua A và vuông góc vứi BC cắt MN tại H.CM: tứ giác BHCN là hình bình hành.
3.CM: H là trực tâm tam giác ABC.
4. Khi đường thẳng (d) thay đổi và thỏa mãn điều kiện đề bài thì H di động trên đường thẳng nào