Cho đường tròn (O;R) và điểm M nằm ngoài (O) sao cho OM=2R. Vẽ các tiếp tuyến MA,MB đến đường tròn (A,B là hai tiếp điểm)
a, Cm tgiac MAB là tgiac đều
b, Tính Smab theo R
c, Tia MO cắt (O) tại H và K (H nằm giữa M,K). Từ O vẽ ON vg góc với AK. CM B,O,N thẳng hàng
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Bài 5: Từ điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MA và cát tuyến MCD sao cho MD nằm giữa hai tia MA và MO. a)Cm: MA?= MC.MD b)Vẽ dây AB vuông góc với OM tại H. Cm: MB là tiếp tuyến của đường tròn (O) c)Cm: MH.MO = MC.MD và MHC = MDÒ
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh . góc AHB = góc AHC
b) Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. Chứng minh . ∆MKH vuông tại K.
Cho đường tròn (O) và điểm M nằm ngoài đường tròn(O,R) với OM>2R, từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) ( A và B là hai tiếp điểm), vẽ cát tuyến MEF của đường tròn (O) (E nằm giữa M và F). Gọi H là giao điểm của MO và AB.
a. Chứng minh tứ giác MAOB nội tiếp đường tròn, xác định tâm của đường tròn đó.
b.Chứng minh MA2 = ME.MF và MH.MO = ME.MF
c. lấy điểm P thuộc cung AB nhỏ. Vẽ tiếp tuyến P cắt MA, MB lần lượt tại K và D, vẽ OK, OD lần lượt cắt AB tại Q và N. Chứng minh KN, DQ, OP đồng quy .
Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM=2R. Từ M vẽ tiếp tuyến MA và MB với đường (O).
a. CM: Tứ giác MAOB nội tiếp và MO vuông góc AB
b. CM: Tam giác AMB đều và tính AM theo R
c. Qua điểm C thuộc cung nhỏ AB vẽ tiếp tuyến với đường tròn (O) cắt AM tại E và cắt MB tại F. OF cắt AB tại K. OE cắt AB tại H. CM:chu vi tam giác MEF không đổi khi điểm C chạy trên cung nhỏ AB.
d. CM: EK vuông góc OF
e. CM: EF=2HK
Cho (O;R) , M là điểm nằm ngoài (O) sao cho OM = 2R . Từ M kẻ 2 tiếp tuyến MA và MB với đường tròn tại A và B . cmr : Tam giác MAB đều; b) Gọi C là giao điểm của MO với (O). Tính diện tích tứ giác AOBC. c) Qua O kẻ đường thẳng vuông góc với AO cắt BM tại D. CMR: DC là tiếp tuyến của (O)
Từ một điểm M ở ngoài (O;R) sao cho OM=2R. Vẽ hai tiếp tuyến MA,MB (A,B là tiếp điểm) ,gọi H là giao điểm OM và AB.
a) Cm: OH vuông góc AB và tính HM theo R.
b) Cm: 4 điểm M,A,O,B thuộc 1 đường tròn, ác địch tâm I của đường tròn.
c) Tia OI cắt (O;R) tại C. Cm MC.IH=MI.HC
Cho đường tròn tâm O bán kính R . Tại điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) . Vẽ đường thẳng MCD không đi qua tâm ( C nằm giữa M và D ) . OM cắt AB và (O) tại H , gọi I là trung điểm OM
a) CM 4 điểm M,A,O,B thuộc 1 đường tròn
b) CM: AB vuông góc với OM