Cho dường tròn tâm tâm O, bán kính R, hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung AD . Nối EC cắt OA tại M, nối EB cắt OD tại N.
a) chứng minh rằng tích \(\frac{OM}{AM}.\frac{ON}{DN}\)là một hằng số. Suy ra giá trị nhỏ nhất của tổng \(\frac{OM}{AM}+\frac{ON}{DN}\), Khi đó cho biết vị trí của điểm E ?
Cho đường tròn tâm O , hai đường kính AB và CD vuông góc với nhau .E là một điểm nằm trên cung nhỏ AD.Nối CE cắt OA tại M và nối BE cắt OD tại N.
1/ Chứng minh :AM.ED=căn (2).OM.EA
2/Chứng minh tích OM/AM .ON/DN là 1 hằng số .Từ đó suy ra Min của tổng OM/AM +ON/DN , khi đó cho biết vị trí của điểm E?
Đề tỉnh mình nha các bẠn
cho (O;R) hai đường kính AB và CD vuông góc với nhau .E là điểm bất kì thuộc cung AD.Nối EC cắt OA tại M , nối EB cắt OD tại N,
a) chứng minh tích \(\frac{OM}{AM}\cdot\frac{ON}{DN}\)là 1 hằng số . suy ra giá trị nhỏ nhất của tổng \(\frac{OM}{AM}+\frac{ON}{DN}\), khi đó cho biết vị trí điểm E
Cho đường tròn tâm O, bán kính R, hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung AD. Nối EC cắt OA tại M, nối EB cắt OD tại N. C/m \(\frac{OM}{AM}.\frac{ON}{DN}\)Là 1 hằng số
Cho (O;R) có hai đường kính AB và CD vuông góc với nhau. Điểm E chuyể động trên cung nhỏ AD ( khác A, D). EC xắt OA tại M. ED cắt OB tại N.
a) CM: BC tiếp xúc với đường tròn ngoại tiếp tam giác BME
b) CM: \(EA+EB=\sqrt{2}EC.\)
c) Tìm vị trí của E trên cung nhỏ AD để tổng: \(\frac{OM}{AM}+\frac{ON}{DN}\) nhỏ nhất. Tìm giá trị nhỏ nhất đó
Cho đường tròn tâm O, bán kính R. Vẽ hai đường kính AB và CD vuông góc với nhau. Lấy điểm E bất kì trên cung nhỏ AD. Nối E với C cắt OA tại M; nối E với B cắt OD tại N. Tính CM.CE + BD2 theo R.
Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Gọi E là 1 điểm trên cung nhỏ AD ( E khác A, E khác D). Nối EC cắt OA tại F. Trên tia AB lấy điểm G sao cho AG = AC, tia CG cắt đường tròn (O) tại điểm thứ hai là H
1) CM góc CFG = góc CHE và Tứ giác EFGH nội tiếp
2) CM tiếp tuyến đường tròn (O) tại H song song với AC
3) Nối eb cắt od tại I. chứng minh af.ed/of.ea = căn 2 và OF/AF + OI/DI >= CĂN 2
Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Gọi E là 1 điểm trên cung nhỏ AD ( E khác A, E khác D). Nối EC cắt OA tại F. Trên tia AB lấy điểm G sao cho AG = AC, tia CG cắt đường tròn (O) tại điểm thứ hai là H
1) CM góc CFG = góc CHE và Tứ giác EFGH nội tiếp
2) CM tiếp tuyến đường tròn (O) tại H song song với AC
3) Nối eb cắt od tại I. chứng minh af.ed/of.ea = căn 2 và OF/AF + OI/DI >= CĂN 2
cho đường tròn (O;R) hai đường kính AB và CD vuông góc với nhau .Điểm E thuộc cung nhỏ BC, điểm F thuộc cung nhỏ BD sao cho EF=R căn 2.Dây AE cắt CD và BC theo thứ tự tại M và N .dây AF cắt CD và BD theo thứ tự tại P và Q a) Tiinhs số đo góc EAF b) chứng minh tứ giác MNQP nội tiếp c) chứng minh NQ// EF d) xác định vị trí của dây EF để diện tích tam giác BND đạt giá trị lớn nhất và tính giá trị đó theo R