https://www.youtube.com/channel/UCU_DXbWfhapaSkAR7XsK5yQ?view_as=subscriber
Gọi OD cắt (O) tại E,F \(\left(E\in DF\right)\)ta có:
\(\widehat{DAE}=\widehat{DFM}\)(cùng bù với \(\widehat{MAE}\))
\(\widehat{ADE}=\widehat{FDM}\)(chung)
Do đó \(\Delta DAE\text{~}\Delta DFM\text{ }\left(g.g\right)\)
\(\Rightarrow\frac{DA}{DF}=\frac{DE}{DM}\)
\(\Rightarrow DA.DM=DE.DF\)
\(=\left(DO-OE\right)\left(DO+OF\right)=\left(DO-OM\right)\left(DO+OM\right)=DO^2-OM^2\)(đpcm)