Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Tuyết Hiền

Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH

Thanh Tùng DZ
28 tháng 4 2020 lúc 15:57

N A B H M C O K I

1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp

suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn

2) vì OI \(\perp\)AC nên OI là đường trung trực của AC

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

Xét \(\Delta AOM\)và \(\Delta COM\)có :

\(\widehat{AOM}=\widehat{COM}\)( cmt )  

OM ( chung )

OA = OC

\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)

\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O

3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)

Xét \(\Delta AOM\)và \(\Delta HCB\)có :

\(\widehat{AOM}=\widehat{HBC}\)\(\widehat{MAO}=\widehat{CHB}=90^o\)

\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)

4) Gọi N là giao điểm của BC và AM

Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN

CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)

Mà AM = NM nên CK = KH 

\(\Rightarrow\)K là trung điểm của CH

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tholauyeu
Xem chi tiết
Hoàng Đức Thịnh
Xem chi tiết
phạm hoàng
Xem chi tiết
︵✿๖ۣۜTổng tài Lin_Chan...
Xem chi tiết
Nguyễn Huế Anh
Xem chi tiết
Hoàng
Xem chi tiết
Lê Minh Ngọc
Xem chi tiết
Nguyễn Ngọc Uyên Như
Xem chi tiết
Mu Mộc Lan
Xem chi tiết