Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh A M 2 = A B . A C
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
Cho đường tròn tâm O,đường AB cố định.H là điểm cố định thuộc đoạn OA (H ko trùng O và A).Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn O tại C và D.Gọi K là điểm tùy ý thuộc cung lớn CD(K ko trùng các điểm C,D và B).I là giao điểm của AK và CD
Chứng Minh : khi K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc 1 đường thẳng cố định
Cho nửa đường tròn tâm O đường kính AB ,C là một điểm nằm giữa O và A đường thẳng vuông góc với AB cắt nửa đường tròn trên tại I . K là một điểm bàng kỳ nằm trên đoạn thẳng CI ( K khác C và I ), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D.
a, chứng minh : các tứ giác BCKM, ACMD nội tiếp đường tròn.
b, chứng minh: ∆ABD~∆MBC
c, chứng minh tâm đường tâm đường tròn ngoại tiếp tam giác ABC D nằm trên một đường thẳng tâm đường tròn ngoại tiếp tam giác AKD nằm trên một đường thẳng cố định Khi K di động trên đoạn thẳn
LÀM GIÚP CÂU D VỚI!
Trên đường thẳng d cho các điểm A;B;C cố định.Đường tròn (O) thay đổi luôn qua B;C. Kẻ tiếp tuyến AE;AF. Gọi I là trung điểm của BC,N là trung điểm của EF.
a) Chứng minh tứ giác AEOF nội tiếp đường tròn.
b) Chứng minh E;F nằm trên 1 đường tròn cố định khi đường tròn (O) thay đổi.
c) đường thẳng FI cắt đường tròn (O) tại M. Chứng minh EF // d .
d) Chứng minh tâm đường tròn ngoại tiếp tam giác ONI luôn luôn thuộc đường thẳng cố định.
Cho nữa đường tròn (O;R) đường kính AB. Một điểm M cố định thuộc đoạn thẳng OB (M khác B và M khác O). Đường thẳng d vuông góc với AB tại M cắt nữa đường tròn đã cho tại N. Trên cúng NB lấy điểm E bất kì ( E khác B và E khác N). Tia BE cắt đường thẳng d tại C, đường thẳng AC cắt nữa đường tròn tại D. Gọi giao điểm của AE với d là H
Gọi K là tâm đường tròn ngoại tiếp tam giác AHC. Chứng minh rằng khi E di động trên cung NB thì K luôn nằm trên 1 đường thẳng cố định
Trên đường d cho 3 điểm D,E,F cố định. Đường tròn (O) thay đổi luôn đi qua E và F. Kẻ các tiếp tuyến DB,DC. Gọi I,H lần lượt là trung điểm của EF và BC.
a. Chứng minh B,C thuộc 1 đường tròn cố định
b. CI cắt (O) tại điểm thứ hai là A. Chứng minh BA//d
c. Chứng minh tâm đường tròn ngoại tiếp tam giác OHI nằm trên 1đường thẳng cố định
d. Đường thẳng qua E vuông góc cới OC cắt BC tại K, CF tại L. Chứng minh rằng: KE=KL
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM^2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a. Chứng minh tứ giác PDKI nội tiếp đường tròn.
b. Chứng minh CI.CP = CK.CD
c. Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d. Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.