Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
cho đường tròn (O;R) có 2 đường kính AB và CD vuông góc với nhau .Gọi I là trung điểm của OB.CI cắt (O;R) tại E.Nối BD cắt AE tại K.
a)Chứng minh:∠AEC=∠BEC=\(^{ }45^o\)
b)Tính tan∠BAE
c) Chứng minh OK vuông góc với BD
Cho đường tròn (O; R), đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyên động trên cung lớn CD (E khác A). Nôi AE cắt CD tại K. Nối BE cắt CD tại H
a, Chứng minh bốn điểm B, M, E, K thuộc một đường tròn
b, Chứng minh AE.AK không đổi
c, Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
cho đường tròn tâm o bán kính r 2 đường kính ab và cd vuông góc với nhau gọi i là trung điểm ob ci cắt đường tròn o tại m (m khác c) am cắt cd tại n cắt bd tại k a)cm:obmn là tứ giác nội tiếp 2) cm:am.an=ac^2 3)tính tan mab 4)tính theo r s tam giác obk
Cho đường tròn (O; R), đường kính AB vuông góc với dây cung CD tại H (HB < R). Gọi M là điểm bất kì trên cung nhỏ AC, toa AM cắt đường thăng CD tại N; MB cắt CD tại E
a, Chứng minh các tứ giác AMEH và MNBH nội tiếp
b, Chứng minh NM.NA = NC.ND = NE.NH
c, Nối BN cắt (O) tại K (K ≠ B). Đường thẳng KH cắt (O) tại điểm thứ hai là F. Chứng minh ba điểm A, E, K thẳng hàng và ∆AMF cân.
d, Chứng minh rằng khi M di dộng trên cung nhỏ AC thì I luôn thuộc một đường tròn cố định
cho đường tròn (O;R) AB và CD là hai đường kính vuông góc với nhau I là trung điểm OB tia CI cắt đường tròn (O;R)tại E . AH là đường cao tam giác ACE tia AH cắt đường tròn (O;R) tại N . Gọi M và K theo tứ tự là giao điểm của các cặp đường thẳng AH với OC ; AE với BD
1/CMR : tam giác AHE vuông cân
Cho đường tròn (O,R), hai đường kính AB và CD vuông góc với nhau.Gọi E là trung điểm của OC, AE cắt (O) tại F.
1)Chứng minh tứ giác OBFE nội tiếp. Tính bán kính đường tròn ngoại tiếp tứ giác OBFE theo R
2) Tính tan∠CDF
3) Đoạn DF cắt AB tại G và cắt CB tại H., AH cắt cắt CO tại K.Chứng minh GK//BC
Cho đường tròn (O;R) đường kính AB cố định. Gọi M là chung điểm đoạn OB . Dây CD vuông góc với AB tại M. Điểm E chuyển động trên cung lớn CD (E khác A). Nối AE cắt CD tại K.Nối BE cắt CD tại H.
a) Chứng minh bốn điểm B,M,E,K thuộc một đường tròn.
b)Chứng minh AE.AK không đổi.
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng