Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
juni

cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.

 a) chứng minh rằng :

 i) các tứ giác AOMC và BOMD nội tiếp 

ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM. 

b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R

juni
29 tháng 3 2020 lúc 16:51

ai giúp mình với ạ

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
1 tháng 4 2020 lúc 14:57

A B C M O D

a . i ) Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO 

Tương tự : = > DMOB nội tiếp 

ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)

Tương tự OD là phân giác \(\widehat{BOM}\)

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)

Ta có : CMOA , OBDM nội tiếp 

\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O) 

b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O) 

Mà \(DM=DB\Rightarrow\Delta DMB\) đều 

Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)

\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)

\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
juni
Xem chi tiết
Lan
Xem chi tiết
Lê Thiện Nhân
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
misora hakata
Xem chi tiết
Lan
Xem chi tiết
Nguyen Thu Ha
Xem chi tiết
Anh
Xem chi tiết