CHo đường tròn (O) có đường kính AB. Gọi C là điểm chính giữa của cung AB, D là điểm tùy ý trên cung nhỏ AC (D không trùng với A và C), I là giao điểm của CO và BD. Gọi H là chân đường vuông góc kẻ từ C xuống BD.
a) Chứng minh tứ giác BCHO nội tiếp trong một đường tròn
b) Chứng mịnh tam giác HCD vuông cân
c) Gọi K là diểm bất kì trên đoạn thẳng IC (K không trùng với I và C), các đường thẳng BK và CK cắt các cạnh CD và CB lần lượt tại M và N. Chứng minh rằng \(\frac{CK}{KI}=\frac{CM}{MD}+\frac{CN}{NB}\)
1.trên (O) lấy các điểm lần lượt là A, B, C, D sao cho sđ cung AB =120 độ: sđ cung BC = 40 độ: sđ cung CD = 100 độ
a) tính các góc của tứ giác ABCD
b) gọi giao của AC và BD là M , AB và DC là N tính góc AMD ; góc AND
2. cho tam giác ABC nội tiếp (O). các tia phân giác góc B, góc C cắt (O) tại E; F. dây EF cắt AB, AC tại M và N
a) chứng minh AM=AN
b) gọi giao của BE và CF là I. chứng minh IE=EC
Cho nửa đường tròn tâm O, đường kính AB kẻ các tiếp tuyến Ax,By cùng phía với nửa đường tròn tại E cắt Ax,By lần lượt ở C và D. a)Chứng minh: CD=AC + BD
b) Tính số đo của góc COD
c)Gọi M là giao điểm của OC và AE, N là giao điểm của OD và BE. Tứ giác MENO là hình gì? Vì sao?
Cho tam giác ABC nội tiếp trong 1 đường tròn. M là điểm bất kì trên cung AC( không chứa điểm B). Kẻ MH vuông góc AC
; Mk vuông góc BC. Gọi P,Q tương ứng là trung điểm của AB và KH. Chứng minh rằng tam giác PQM là tam giác vuông
Cho hình vuông ABCD tâm O, cạnh hình vuông bằng 10cm. Gọi I là 1 điểm bất kì nằm trên nửa đường tròn đi qua 3 điểm A,O,D không chứa điểm O. IO cắt cạnh BC tại J. Cạnh DK của hình bình hành IJKD cắt BC tại E, EH là đường cao của tam giác EKJ.
a)Tính số đo của góc HEK
b) Chứng minh rằng IJ>10 căn 2 cm
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.
a) chứng minh rằng :
i) các tứ giác AOMC và BOMD nội tiếp
ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM.
b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R