Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
từ điểm m nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến ma mb gọi E là trung điểm cuả MB đường thẳng AE cắt (O) tại C,MC cắt (O) tại D ,H là giao điểm của AB và MO a) chứng minh HE// AM b) chứng minh tứ giác HCEB nội tiếp và AD // MBc) gọi F là giao điểm của BO và(O) K là giao điểm của AD và MF chứng minh KD =3KA
Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA,MB ( A,B là tiếp điểm) và một cát tuyến M cắt đường tròn tại C,D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1, Chứng minh MC.MD=ME.MO 2, giả sử OM=3R. Tìm diện tích lớn nhất của túe giác MADB
từ điểm M nằm ngoài (O) kẻ 2 tiếp tuyến MA,MB với đường tròn O.Kẻ dây cung AD song song với MB.Gọi E là trung điểm MB.AE cắt đường tròn tại điểm thứ hai là C. Đoạn thẳng MO cắt đường tròn tại điểm K.
a,Chứng minh EB^2=EC.EA b, Chứng minh K là tâm đường tròn nội tiếp tam giác MAB c, CM 3 điểm M,C,D thẳng hàng
từ điểm M nằm ngài đường tròn O sao cho OM>2R vẽ 2 tiếp tuyến MA,MB ( A,B là tiếp điểm ) gọi I là trung điểm AM ,BI căt đường tròn O tại C , tia CM cắt đường tròn O tại D
A/ chứng minh : OM vuông góc AB tại H và IA^2 = IB.IC
B/Chứng minh BD// AM
C/ chứng minh tứ giác AHCI nội tiếp và tia CA là tia phân giác của góc ICD
thank 3333
Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)
Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I. K là một điểm bất kì nằm trên đoạn thẳng CI (K khác C và I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt CI tại D. Chứng minh :
a) Các tứ giác : ACMD ; BCKM nội tiếp đường tròn
b) CK.CD = CA.CB
c) Gọi N là giao điểm của AD và (O). Chứng minh rằng : B, K, M thẳng hàng
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B,C là các tiếp điểm ), đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E, dây DE không đi qua tâm O). Gọi H là trung điẻm của DE, AE cắt BC tại K
a) Chứng minh tứ giác ABOC nội tiếp, xác định tâm đường tròn nội tiếp tứ giác ABOC
b) Chứng minh HA là tia phân giác của góc BHC
c) Chứng minh \(\dfrac{2}{AK}\)=\(\dfrac{1}{AD}\)+\(\dfrac{1}{AE}\)
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến
AB với đường tròn (O)(B là tiếp điểm) và đường kính BC. Trên đoạn thẳng CO lấy điểm I ( Ikhác C, I khác O). Đường thẳng AI cắt (O) tại hai điểm D và E (D nằm giữa A và E). Gọi H làtrung điểm của đoạn thẳng DE.
1) Chứng minh bốn điểm A, B, O, H cùng nằm trên một đường tròn.
2) Chứng minh . \(\dfrac{AB}{AE}=\dfrac{BD}{BE}\)
3) Đường thẳng d đi qua điểm E song song với AO,d cắt BC tại điểm K. Chứng minh HK // DC.
4) Tia CD cắt AO tại điểm P, tia EO cắt BP tại điểm F. Chứng minh tứ giác BECF là hình chữ nhật.
Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA và cát tuyến MBC với (O) (A là tiếp điềm, MB < MC, B và A nằm cùng một phía đối với MO). Kẻ đường kính AD của (O), MO cắt CD tại E. Gọi H là hình chiếu của A trên MO.
1) Chứng minh tứ giác AHEC là tứ giác nội tiếp.
2) Chứng minh: MBA đồng dạng với MAC và MB.MC = MH.MO.
3) Chứng minh góc BDC = 1/2 góc BHC và AE // BD.