1: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc ABB
=>ME*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
1: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc ABB
=>ME*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
Cho điểm M nằm ngoài đường tròn (O). Vẽ tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I. Chứng minh:
1) Tứ giác MAOB nội tiếp
2)\(MA^2=MC.MD\)
3) OH.OM + MC.MD =\(MO^2\)
4)CI là phân giác của góc MCH
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA và MB đến (O)( A,B là hai tiếp điểm). Gọi MCD là cát tuyến của (O) (C nằm giữa M và D; tia MD nằm trong ∠OMB). Vẽ OE vuông góc với CD tại E.
Chứng minh: tứ giác MAEB nội tiếp đường tròn tâm I, xác định tâm I của đường tròn này.
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
từ điểm m nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến ma mb gọi E là trung điểm cuả MB đường thẳng AE cắt (O) tại C,MC cắt (O) tại D ,H là giao điểm của AB và MO a) chứng minh HE// AM b) chứng minh tứ giác HCEB nội tiếp và AD // MBc) gọi F là giao điểm của BO và(O) K là giao điểm của AD và MF chứng minh KD =3KA
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))
Bài 6. (2đ) Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn (O) sao cho OM > 2R.
Vẽ hai tiếp tuyến MA và MB (A, B là tiếp điểm) đến (O). Gọi H là giao điểm của AB và OM.
Kẻ đường kính AC của (O).
a. Chứng minh: OM⏊AB và BC//OM.
b. Tia CH cắt đường tròn (O) tại K (K khác C) và tia AK cắt đoạn OM tại I. Chứng minh
HO.HM = AK.AI và ∆AHI đồng dạng ∆CBH.
c. Chứng minh I là trung điểm HM.
từ điểm M nằm ngoài đường tròn(O,R) vẽ hai tiếp tuyến MA ,MB với(O,R) (A,B là hai tiếp điểm)
a chứng minh MO vuông AB tại H
b Vẽ đường kính AC của (O,R) Và MC cắt (O) tại D Chứng minh ADC bằng 90 độ và tam giác MHD bằng tam giác MCO
c Gọi K là giao điểm của MC và AB ,AD cắt OM I. Chứng minh KIsong song AC giúp với đang cần gấp
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp