Cho đường tròn (O) và điểm A nằm ngoài (O). Từ điểm A kẻ hai tiếp tuyến AB và AC (BC là hai tiếp điểm)vẽ ĐK BD . OA vuông góc BC ,DC song song OA ,AD cắt (O) TAI ĐIỂM thứ 2 là E gọi H là giao điểm của OA và BC, K trung điểm ED,OK cắt BC tại F
CM:FD là t/t (O)
câu hỏi khó giải dùm
Cho đường tròn (O; R), điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB, AC
với đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC.
a) CMR: OA vuông góc với BC và OH.OA = R2
b) Vẽ dây BD song song với OA. AD cắt đường tròn tại E (E khác D). CMR ba điểm O, C,
D thẳng hàng AE.AD = AH.AO
c) CMR: AHE=OED
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho đường tròn (O), từ điểm A ngoài (O) vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm). Gọi H là giao điểm OA và BC. Vẽ đường kính BD của (O). Đường thẳng qua C vuông góc với AB cắt OA tại M, I là trung điểm OC. Đường thẳng vuông góc với BD tại D cắt BC tại E. Chứng minh OE vuông góc AD
Cho điểm A nằm ngoài dường tròn ( O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O) (B,C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC
a) Cm BC vuông góc DC, OA vuông góc BC
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D). Cmr: OH.OA= R2 và DE.DA=4OH.OA
c) Gọi M là giao điểm của BC và AD, N là giao điểm của OA và BE. Cmr: MN song song BD
d) Tiếp tuyến D của đường tròn (O) cắt BC tại F. Gọi K là giao điểm của AD và OF. Giả sử AB= √5 .R . Tính độ dài KE theo R
Toán lớp 9
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
BT: Cho điểm A nằm ngoài dường tròn ( O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O) (B,C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC
a) Cm BC vuông góc BD, OA vuông góc BC
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D). Cmr: OH.OA= \(R^2\) và DE.DA=4OH.OA
c) Gọi M là giao điểm của BC và AD, N là giao điểm của OA và BE. Cmr: MN song song BD
d) Tiếp tuyến D của đường tròn (O) cắt BC tại F. Gọi K là giao điểm của AD và OF. Giả sử AB= \(\sqrt{5}\) .R . Tính độ dài KE theo R
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến |AB,AC với đường tròn (O) (B,C là các tiếp điểm). Vẽ dường kính CD của đường tròn (O). AD cắt đường tròn (O) tại N (N khác D), gọi H là giao điểm của OA và BC. Gọi M là giao điểm của AD và BC, E là giao điểm của OA và CN. Đường thẳng vuông góc với ME cắt EN,BC,DC lần lượt tại F,P,Q.Cmr: PF=PQ
Cho đường tròn (O;R). Từ điểm A ngoài đường tròn kẻ các tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm). Gọi H là giao điểm của AO và BC
a) Cm: AO vuông góc với BC tại H
b) Vẽ đường kính BD của (O), cm: DC song song AO
c) AD cắt (O) tại E (E khác D). CM AE.AD=AH.AO
d) Qua vẽ đường thẳng vuông góc với AB. Đường thẳng này cắt OC tại F. CM: OA^2 = 2OC.OF