) Cho đường tròn ( O ; R ) có đường kính BD . Trên tiếp tuyến tại B của ( 0 ) lấy điểm M sao cho MB = BD = 2R . Gọi E là giao điểm của MD và ( 0 ) ( E + D ) . Từ M vẽ MA là tiếp tuyến của ( O ) ( A là tiếp điểm ) . Gọi H là giao điểm của OM và AB . a ) Chứng minh : Tứ giác MEHB nội tiếp và MA^2 = ME.MD b ) Tính MHE , c ) Gọi F là hình chiếu của A trên BD và K là giao điểm của AF và BE . Chứng minh A là trung điểm của FK
a) Vì BD là đường kính \(\Rightarrow\angle BED=90\)
Vì MB,MA là tiếp tuyến \(\Rightarrow\Delta MAB\) cân tại M và MO là phân giác \(\angle AMB\)
\(\Rightarrow MO\bot AB\Rightarrow\angle MHB=90\)
Ta có: \(\angle MHB=\angle MEB=90\Rightarrow MEHB\) nội tiếp
Xét \(\Delta MAE\) và \(\Delta MDA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAE=\angle MDA\\\angle DMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta MAE\sim\Delta MDA\left(g-g\right)\Rightarrow\dfrac{MA}{ME}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.ME\)
b) MEHB nội tiếp \(\Rightarrow\angle MHE=\angle MBE=\angle MDB\)
Vì \(\Delta MBD\) vuông tại B có \(MB=BD=2R\Rightarrow\Delta MBD\) vuông cân tại B
\(\Rightarrow\angle MDB=45\Rightarrow\angle MHE=45\)
c) Xét \(\Delta MOB\) và \(\Delta BAF:\) Ta có: \(\left\{{}\begin{matrix}\angle MBO=\angle BFA=90\\\angle BOM=\angle BAF=\dfrac{1}{2}\angle BOA\end{matrix}\right.\)
\(\Rightarrow\Delta MOB\sim\Delta BAF\left(g-g\right)\Rightarrow\dfrac{AF}{AB}=\dfrac{OB}{MO}=\dfrac{OD}{MO}\left(1\right)\)
Vì \(\Delta MBD\) vuông cân tại B có \(BE\bot MD\Rightarrow\angle EBD=45\)
mà \(\Delta BFK\) vuông tại F \(\Rightarrow\Delta BFK\) vuông cân tại F \(\Rightarrow\angle BKF=45\)
Xét \(\Delta BAK\) và \(\Delta MOD:\) Ta có: \(\left\{{}\begin{matrix}\angle ABK=\angle DOM\left(MEHBnt\right)\\\angle BKA=\angle MDO=45\end{matrix}\right.\)
\(\Rightarrow\Delta MOD\sim\Delta BAK\left(g-g\right)\Rightarrow\dfrac{AK}{AB}=\dfrac{OD}{MO}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AK}{AB}=\dfrac{AF}{AB}\Rightarrow AK=AF\Rightarrow\) đpcm