Cho đường tròn O đường kính AB=2R. Vẽ dây BD=R. Trên tia đối của tia BA lấy điểm C sao cho BC = R. Qua C vẽ đường thẳng vuông góc với AC cắt AD tại M.
a) Chứng minh tứ giác BCMD nội tiếp
b) CM: AD. AM = AB. AC
c) tính theo R diện tích hình viên phân giới hạn bởi cung nhoe BD và dây BD của đg tròn O
Cho đường tròn (O) và đường kính AB =2R . Trên tia đối của tia BA lấy điểm C sao cho BC=R . Lấy điểm D thuộc đường trond (O) sao cho BD =R . Đường thẳng vuông góc với AC tại C cắt AD tại N
a, Cm tứ giác BCND nội tiếp
b, Cm tam giác ABN cân
c, Tính AD.AN theo R
trên nửa đường tròn (O;R) , đường kính AD lấy điểm B và C sao cho ba cung AB, BC, CD bằng nhau. qua C vẽ đường thẳng vuông góc với AD tại H; kéo dài AB cắt tia HC tại T; BD và CH cắt nhau taij E
a. cm HDTB nội tiếp đường tròn
b. gọi F là trung điểm của TE, cm FB là tiếp tuyến của (O)
c. tính diện tich tam giác TAH theo R
Cho nửa đường tròn tân O , đường kính BC= 2R và một điểm A trên nửa đường tròn ấy sao cho BA= R ,M là điểm trên cung AC . MB cắt AC tại I tia BA cắt CM tai D.
a) chứng minh : tam giác AOM đều .
b)chứng minh tứ giác AIMD nội tiếp đường tròn
c) tính diện tích hình quạt ADC theo R .
d) tính góc ADI=?.
e) cho góc ABM= 45 độ . Tính độ dài đoạn thẳng AD theo R.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đường tròn (O) , đg kính AB = 2R . Đ C nằm trên tia đối của tia BA sao cho BC=R. Đ D thuộc đường tròn (O) sao cho BD=R. Đg thẳng vuông góc vs BC tại C cắt tia AD tại M. Cmr
a) tứ giác BCMDA nội tiếp
b) AB.AC=AD.AM
c) CD la tiep tuyen cua dg tron (O)
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
cho đường tròn tâm o bán kính r, đường kính AB vẽ dây AM bằng r
a) Tính các góc tam giác AMB và MB theo r
b) Vẽ tia phân giác MD của tam giác AMB .Gọi E,F là chân đường vuông góc vẽ từ D đến MA,MB .Tứ giác MEDF là hình gì ?vì sao? tính chu vi và diện tích của nó theo r
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.