cho đường tròn O. đường kính AB=2R, dây AC tạo với AB 1 góc 30 độ . tiếp tuyến tại C cắt đt AB tại D cmr a) tam giác OAC đồng dạng tam giác CAD b) DB x DA = DC2=3R2
Cho đường tròn tâm O đường kính AB và 1 dây AC tạo với AB 1 góc 30 độ Tiếp tuyến của đường tròn tại C cắt đường thẳng AB tại D . Chứng minh
a tam giác OAC đồng dạng với tam giác CAD
b BD* DA = DC^2 =3 R^2
cho đường tròn tâm O đường kính AB = 2R. trên nửa đường tròn đường kính AB lấy C và D sao cho góc COD = 90 độ, AC cắt BD tại M.
a, chứng ming tam giác MCO đồng dạng với tam giác MBA. tính tỉ số đồng dạng
b, cho góc CBA = 30 độ. tính cung BC nhỏ
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
cho nửa đường tròn O đường kính AB bằng 2R. Từ (O) vẽ Ot vuông góc AB cắt nửa đường tròn tại C. trên Ct lấy điểm D sao cho CD = R. Từ D Vẽ tiếp tuyến DM, DN với nửa đường tròn O cắt AB lần lượt tại E và
a. CMR: tam giác OCM, tam giác DEF đều
b. CMR: từ điểm F lấy trên cung MN vẽ tiếp tuyến với đường tròn cắt DM, DN tại P và Q. CMR: chu vi tam giác DPQ không đổi khi S di động trên MN
c. tính theo R phần diện tích giới hạn bởi tam giác DEF với nửa đường tròn đường kính AB
d. tính theo R thể tích của hình sinh ra bởi phần diện tích ở câu c khi cho hình vẽ quay một vòng tròn quanh AB
vẽ hình giúp luôn ạ
Cho đường tròn (O) đường kính AB=12cm, lấy C trên (O) sao cho góc CAB=30°. Tiếp tuyến tại A và C của (O) cắt nhaư ở D. DO cắt AC tại H, DB cắt (O) tại F.
a)Chứng minh: OD vuông góc AC tại H và DA^2=DH.DO
b) Chứng minh tứ giác BOHF nội tiếp
c) OD cắt (O) tại E(E cùng phía F có bờ AB). Chứng minh E là tâm đường tròn nội tiếp tam giác ABC và tính bán kính đường tròn nội tiếp tam giác DAC
cho đường tròn tâm o bán kính r đường kính ab cung ac có số đo lớn hơn 90 độ. qua m trên dây ac vẽ đường thẳng xy vuông góc ab. tiếp tuyến tại c cắt ab và xy lần lượt tại d,e.
a) chứng minh tam giác ecm cân
b) xác định vị trí điểm c để tam giác cad cân tại c
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD