Cho đường tròn (O) đường kính AB = 2R. Dây CD vuông góc với AB tại H thuộc đoạn OB (H khác O và B). Đường thẳng d tiếp xúc với đường tròn tại A. Tia CO và DO cắt đường thẳng d lần lượt tại M và N. Các đường thẳng CM và DN cắt đường tròn (O) tại E và F (E khác C, F khác D)
a) C/m: MNFE là tứ giác nội tiếp
b) Tìm vị trí của H để AEOF là hình thoi
c) Lấy K đối xứng với C qua A, gọi G là trọng tâm của tam giác KAB. C/m: khi H chuyển động trên OB thì G luôn thuộc một đường tròn cố định.
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO là hình bình hành
C. Tính CM, CN không phụ thuộc vào vị trí M
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO ngoại tiếp đường tròn
C. Tính CM, CN không phụ thuộc vào vị trí M
Cho đường tròn (O) đường kính AB. Lấy điểm M thuộc (O) sao cho MA < MB. Vẽ dây MN vuông góc với AB tại H. Đường thẳng AN cắt BM tại C. Đường thẳng qua C vuông góc với AB tại K và cắt BN tại D
a, Chứng minh A, M, C, K cùng thuộc đường tròn
b, Chứng minh BK là tia phân giác của góc MBN
c, Chứng minh ∆KMC cân và KM là tiếp tuyến của (O)
d, Tìm vị trí của M trên (O) để tứ giác MNKC trở thành hình thoi
Cho đường tròn (O;R), đường kính AB. Trên đoạn thẳng OA lấy điểm M bất kỳ (M không trùng với A và O) Đường thẳng qua M vuông góc với AB cắt đường tròn (O) tại C. Gọi D là điểm chính giữa cung AB (c,D nằm khác phía đới với AB), gợi I là trung điểm của dây cung BC
a. Chứng minh tứ giác MCIO nội tiếp
b. Xác định vị trí điểm M để diện tích tam giác MCD lớn nhất
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O), đường kính AB. Lấy điểm M thuộc (O) sao cho MA < MB. Vẽ dây MN vuông góc với AB tại H. Đường thẳng AN cắt BM tại C. Đường thẳng qua C vuông góc với AB tại K cứt BN tại D
a) Chứng minh A,M,C,K thuộc 1 đường tròn
b) Chứng minh BK là phân giác của góc MBN
c) Chứng minh tam giác KMC cân và KM là tiếp tuyến của (O)
d) Tìm vị trí của M trên (O) để tứ giác MNKC là hình thoi
cho đường tròn (O,R) và C,D là hai điểm thuộc đường tròn ( CD không đi qua O) gọi B là điểm chính giữa thuộc cung nhỏ CD và BA là đường kính của (O) . trên tia đối của tia AB lấy điểm S. đường thẳng SC cắt (O) tại M,MD cắt AB tại K,MB cắt AC tại H. Chứng minh rằng :
a. tứ giác AMHK nội tiếp trong đường tròn
b. tứ giác CDKH là hình thang
c. OK.OS=R2
Cho đường tròn (O) đường kính AB, lấy điểm M bất kì trên đường tròn. Qua điểm H thuộc đoạn OB vẽ đường thẳng d vuông góc với AB, đường thẳng d cắt các đường thẳng MA, MB lần lượt tại D, C . Tiếp tuyến tại M của đường tròn cắt đường thẳng d tại I , tia AC cắt đường tròn tại E, đường thẳng ME cắt OI tại K. Chứng minh :
a, Tứ giắc MOHE nội tiếp
b, IE là tiếp tuyến của đường tròn (O)
c, Đường thẳng ME đi qua điểm cố định