Cho đường tròn (O) đường kính AB, E là một điểm nằm giữa A và O, vẽ dây MN đi qua E và vuông góc với đường kính AB. Gọi F là giao điểm của các đường thẳng NC và MB. Chứng minh:
a) Tứ giác AMCN là hình thoi.
b) NF ⊥ MB
c) EF là tiếp tuyến của đường tròn đường kính BC.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đường tròn (O) đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O’) đường kính BC. Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
c) gọi K là giao điểm của DB và (O’). CMR: 3 điểm E, C, K thẳng hàng
Cho đường tròn (o) đường kính AB , điểm C nằm giữa A và O . Vẽ đường tròn (o') đường kính BC
a) xác định vị trí tương đối của đường tròn (o) và (o')
b) kẻ dây DE của đường tròn (o) vuông góc với AC tại trung điểm H của AC . Tứ giác ADCE là hình j ? Vì sao.
c) gọi K là giao điểm của DB và (o'). CMR 3 điểm E,C,K thẳng hàng
d) CMR: HK là tiếp tuyến của đường tròn (o)
Cho nửa đường tròn (O) đường kính AB và một điểm C nằm trên nửa đường tròn. Gọi D là một điểm trên đường kính AB, qua D kẻ đường vuông góc với AB cắt BC ở F, cắt AC ở E. Tiếp tuyến của nửa đường tròn ở C cắt EF ở I. Chứng minh:
a) I là trung điểm của EF
b) Đường thẳng OC là tiếp tuyến đường tròn ngoại tiếp tam giác ECF
Cho đường tròn (O), đường kính AB .Gọi C là điển nằm giữa A và O. Vẽ đường tròn (I) có đường kính CB
a) Xét vị trí tương đối của hai đường tròn (O) và (I)
b) Kẻ dây CE của đường tròn O vuông góc với AC tại trug điểm H của AC. Tứ giác ADCE là hình gì?Tại sao
c) Gọi K là giao điểm DB và đường tròn (I). Cm 3 điểm E,C,K thẳng hàng
d) Cm HK là tiếp tuyến của đường tròn (I)
GIÚP VỚI
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
cho đoạn thẳng AB và điểm E nằm giữa điểm A và điểm B sao cho AE<BE.vẽ đường tròn O1 đường kính AE và đường tròn O2 đường kính BE.vẽ tiếp tuyến chung ngoài MN của hai đường tròn trên,với M là tiếp điểm thuộc (O1) và N là tiếp điểm thuộc (O2).
a )Gọi F là giao điểm của các đường thẳng AM và BN.a,chứng minh rằng đường thẳng EF vuông góc với đường thẳng AB.
b) với AB=18cm và AE=6cm,vẽ đường tròn (O) đường kính AB.đường thẳng MN cắt đường tròn (O) ở C và D,sao cho điểm C thuộc cung nhỏ AD.tính độ dài đoạn thẳng CD
làm ơn giúp mình
Cho đường tròn (O) đường kính AB và C là điểm nằm giữa A và O. Vẽ đường tròn (I) có đường kính CB
a, Xét vị trí tương đối của (O) và (I)
b, Kẻ dây DE của (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì?
c, Gọi K là giao điểm của đoạn thẳng DB và (I). Chứng minh ba điểm E, C, K thẳng hàng
d, Chứng minh HK là tiếp tuyến của (1)