Cho đường tròn ( O ) đường kính AB , C là điểm bất kỳ trên đường tròn ( C khác A , B ) . Gọi H là hình chiếu của C trên AB , M là trung điểm của CH . Kẻ tia MK vuông góc với CO ( K thuộc OC ) cắt đường tròn ( O ) tại E. Kẻ đường kính CI của đường tròn ( O ) . Chứng minh : 1 ) CE vuông EI 2 ) Tam giác CEH cân .
cho nửa đường tròn tâm o đường kính ab. c là điểm trên nửa đường tròn, gọi h là hình chiếu của c trên ab, m là trung điểm của ch. Qua m kẻ đường thẳng vuông góc với oc cắt nửa đường tròn o tại d và e, oc tại k
a) chứng minh h, m, k, o cùng thuộc một đường tròn
b) co cắt (o) tại điểm thứ hai là i. chứng minh \(ch^2=ck.ci\)
c) tìm vị trí của c trên nửa đường tròn o để diện tích tam giác ced nhỏ nhất
Cho đường tròn (O) đường kính AB, C là một điểm thuộc (O) (C không trùng A và B). Gọi H là hình chiếu của C trên AB. Qua trung điểm I của CH, kẻ dây DE của đường tròn tâm (O) vuông góc với CO, chứng minh tam giác CDH cân.
Cho đường tròn (O; R) đường kính AB và điểm C bất kỳ thuộc đường tròn (C khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1. Chứng minh bốn điểm A, E, C, O cùng thuộc một đường tròn.
2. Chứng minh BC.BD = 4R2 và OE song song với BD.
3. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F. Chứng minh BF là tiếp tuyến của đường tròn (O;R).
4. Gọi H là hình chiếu của C trên AB, M là giao của AC và OE. Chứng minh rằng khi điểm C di động trên đường tròn (O; R) và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua một điểm cố định.
Cho nửa đường tròn (O) đường kính AB, C là 1 điểm thuộc nửa đường tròn, H là hình chiếu của C trên AB. Qua trung điểm M của CH kẻ đường vuông góc với OC cắt nửa đường tròn (O) tại D và E. C/m AB là tiếp tuyến của đường tròn (C;CD)?
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AB>CB;C khác A và B.Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I 1/Chứng minh 4 điểm C,H,O,I CÙNG THUỘC MỘT ĐƯỜNG TRÒN 2/kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M.C/m MC là tiếp tuyến của đường tròn O 3/C/m tam giác AMO đồng dạng với HCB 4/Gọi K là giao điểm của CH và MB. Chứng minh K là trung điểm của CH
Cho nửa đường tròn tâm O đường kính AB C là 1 điểm thuộc nửa đường tròn H là hình chiếu của C trên AB . Qua trung điểm M của CH kẻ đường vuông góc với OC cắt nửa đường tròn tại D và E . CMR AB là tiếp tuyến đường tròn tâm C bán kính CD
Cho đường tròn (O) và đường kính AB. C là một điểm trên đường tròn khác A và B. H là hình chiếu của C trên AB. I là trung điểm của CH. Đường thẳng đi qua I và vuông góc với OC cắt (O) tại 2 điểm D và E.Chứng minh rằng tam giác CDH là một tam giác cân