A và B cùng nhìn OC dưới 1 góc vuông \(\Rightarrow OACB\) nội tiếp
\(\Rightarrow\widehat{AOB}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=180^0-100^0=80^0\)
A và B cùng nhìn OC dưới 1 góc vuông \(\Rightarrow OACB\) nội tiếp
\(\Rightarrow\widehat{AOB}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=180^0-100^0=80^0\)
Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau ở A. Tính: A B C ^ , B A C ^
Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau ở A. Tính: ABC ^ , BAC ^
Cho đường tròn (O; R) và dây cung BC = R. Hai tiếp tuyến của đường tròn (O) tại B, C cắt nhau ở A. Tính: A B C ^ , B A C ^
Cho đường tròn (O;R) có đường kính AC và dây cung BC = R.
a) C/m ∆ABC vuông tại B và tính số đo của góc A và độ dài AB theo R.
b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. C/m DB là tiếp tuyến của đường tròn (O).
c) Vẽ dây BE⊥AC tại M. C/m tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R.
d) Tiếp tuyến tại C của (O) cắt DB tại K. C/m AK, CD, BE đồng quy.
Cho(O;R) đường kính AB và dây cung AC.Các tiếp tuyến với đường tròn tại B và C cắt nhau ở D
a) Cm DO//AC
b) Biết góc BAC=30 độ;R=2cm.Tính BD và CD
cho đường tròn o và dây cung ab với góc aob=120 hai tiếp tuyến tại a và b của đường tròn o cắt nhau tại c
a)CM tam giác abc là tam giác đều và tính diện tích abc theo R
b)lấy m thuộc cung nhỏ ab của đường tròn. vẽ tiếp tuyến m cắt ac và bc tại d và e. CM ad+be=de
c)CM GÓC dce=doe
Cho hai đường tròn (O) và (O') cắt nhau tại A và B, trong đó OA là tiếp tuyến của đường tròn (O'). Tính độ dài dây cung AB biết OA = 20 cm và O'A = 15 cm
Cho đường tròn (O) có hai dây cung AB và CD cắt nhau tại T . Tiếp tuyến tại A, B cắt nhau ở K. Tiếp tuyến tại C, D cắt nhau ở L. Chứng minh rằng OT ⊥ KL.
Cho đường tròn (O; R) với dây cung BC cố định. Điểm A thuộc cung lớn BC. Đường phân giác của B A C ^ cắt đường tròn (O)tại D. Các tiếp tuyến của đường tròn (O; R) tại C và D cắt nhau tại E. Tịa CD cắt AB tại K, đường thẳng AD cắt CE tại I
a, Chứng minh BC song song DE
b, Chứng minh AKIC là tứ giác nội tiếp
c, Cho BC = R 3
Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn