Cho đường tròn (O), dây AB và dây CD, AB < CD. Giao điểm K của các đường thẳng AB, CD nằm ngoài đường tròn. Đường tròn (O; OK) cắt KA và KC tại M và N. Chứng minh rằng KM < KN.
Cho đường tròn(O), dây AB và dây CD, AB < CD. Giao điểm K của các đường thẳng AB, CD nằm ngoài đường tròn. Đường tròn (O;OK) cắt KA và KC tại M và N.
Chứng minh KM < KN.
BT: Cho đường tròn (O), dây AB< dây CD. Giao điểm K của AB, CD nằm ngoài đương tròn (O) cắt KA, KC tại M,N. C/m KM<KN
Cho đường tròn (O) và điểm P nằm ngoài đường tròn (O). Vẽ các tuyến BAP và DCP (không đi qua O). Gọi H,K lần lượt là trung điểm của AB,CD.
a) Chứng minh: O,P,H,K cùng thuộc đường tròn tâm I. Xác định vị trí điểm I.
b) Gọi M,N là giao điểm của 2 đường tròn tâm I và tâm O. Chứng minh: cung PM=cung PN
c) Giả sử AB>CD .Chứng minh cung OH nhỏ hơn cung OK, HP>KP
Cho đường tròn tâm O, hai dây AB > CD. AB cắt CD tại điểm M nằm ngoài đường tròn (O) (A nằm giữa M và B; C nằm giữa M và D). Gọi H, K lần lượt là trung điểm AB, CD.
Chứng minh MH > MK
Cho đường tròn (O) đường kính AB. Từ điểm P bên ngoài đường tròn, kẻ đường thẳng d vuông góc với AB sao cho d cắt (O) tại C và D (D nằm giữa P và C). Các đường thẳng PA,PB lần lượt cắt đường tròn tại M và N. Đường thẳng AN cắt CD tại H. Gọi K là trung điểm của PH. CHứng minh: DH.PC=HC.PD
Cho điểm M nằm ngoài (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (tia MC nằm giữa tia MO và MA). Gọi H là giao điểm của OM và AB.
a/ Chứng minh tứ giác MAOB nội tiếp
b/ K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc 1 đường tròn. Suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt AB tại N. Chứng minh ND là tiếp tuyến của (O)
d/ Vẽ đường kính BE của đường tròn (O). Từ C vẽ đường thẳng song song với OM cắt các đường thẳng BE và ED lần lượt tại I và P. Chứng minh I là trung điểm CP.
Cho đường tròn (O), điểm P nằm ngoài đường tròn. Vẽ các tuyến PAB và các tuyến PCD không qua tâm. Gọi H,K lần lượt là trung điểm AB,CD
a, Chứng minh O,P,K,H thuộc đường tròn tâm I, xác định vị trí điểm I
b,gọi MN là giao điểm của đường tròn (O) , (I)
Chúng minh cung PM =cung PN
c, Giả sử AB >CD c/m cung OH < cung OK
và HP> KP
Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF
Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.
Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.
Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.
Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK.
giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha