cho duong tron (O) co BC la day cung co dinh nho hon duong kinh , A la diem di dong tren cung BC lon ( A khong trung B va C). goi AD, BE, CF la duong cao cua tam giac ABC, EF cat BC tai M. Qua D ke duong thang song song EF cat AB tai P va cat AC tai Q:
a) CM: \(\widehat{BPQ}=\widehat{BCQ}\)va tu giac BPCQ noi tiep
b) CM: tam giac DPF can tai D
c) goi N la trung diem BC. CM: MF.ME=MD.MN
d) CM duong tron ngoai tiep tam giac MPQ luon di qua 1 diem co dinh khi A di dong tren cung lon BC
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).