các bạn trả lời nhanh được không
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
các bạn trả lời nhanh được không
Cho đường tròn (I;R) nội tiếp tam giác ABC. Chứng minh rằng \(abc\ge24\sqrt{3}r^3\)
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O;R),hai đường cao BE va CF của tam giaic cắt nhau tai H. Kẻ đường kính AK của đường tròn(O;R),gọi là trung điểm của BC.
a,Chứng minh AH=2.I
b, Biết góc BAC=60 độ ,tính độ dài dây BC theo R
2,Cho tam giác ABC(góc A=90 độ),BC=a. Gọi bán kính của đường tròn nội tiếp tam giác ABC là r. Chứng minh rằng : \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
cho tam giác ABC có 3 góc nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC.Gọi M,N thứ tự là hình chiếu của H trên AB,AC.
1,chứng minh rằng tứ giác AMHN là yws giác nội tiếp
2,chứng minh góc ABC bằng góc ANM
3,chứng minhOA vuông góc với MN.
4,cho biết AH=R.\(\sqrt{2}\).Chứng minh M.O.N thẳng hàng
Cho (O; R) đường kính AB. M thuộc (O); (M khác A; B, MA < MB) . Trên tia MB lấy N sao cho MA = MN. Dựng hình vuông AMNP. Kéo dài MP cắt (O) ở C (C khác M ).
1) Chứng minh rằng tam giác ABC vuông cân.
2) Gọi I là tâm đường tròn nội tiếp tam giác AMB . Chứng minh rằng tứ giác AINB nội tiếp.
3) Chứng minh rằng tam giác BNC cân. Tính bán kính đường tròn ngoại tiếp AINB theo R .
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), có BC=R\(\sqrt{3}\)và AB<AC. Gọi H là trực tâm tam giác ABC, nối AH cát đường tròn tại điểm D khác A.
1. tính góc BAC. Suy ra tam giác OAH cân
2. chứng minh rằng AB.BC=AB.CD+AC.BD
Cho tam giác ABC nội tiếp đường tròn (O;R) biết \(AB=R\sqrt{2-\sqrt{3}}\) và \(AC=R\sqrt{2+\sqrt{3}}\)
a) chứng minh tam giác ABc vuông
b) tính số đo các góc
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC