cho đường tròn tâm O đường kính AB và một đường kính CD thay đổi. kẻ đường thẳng d là tiếp tuyến tại B của đường tròn tâm O. AC cắt d tại M; AD cắt d tại N.
a) gọi I là trung điểm của MN. AI cắt CD tại H. chứng minh AI vuông góc với CD
b) tìm vị trí của đường kính CD để diện tích tứ giác CMND gấp ba lần diện tích tam giác ACD
Cho AB= 2a, M là trung điểm của AB. Vẽ đường tròn (O), đường kính MB, tiếp tuyến AC. Đường thẳng vuông góc với AB tại A cắt BC tại D. Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Tính diện tích tứ giác AOID theo a.
Cho đường tròn (O;R) có AB là đường kính cố định, CD là đường kính thay đổi. Đường thẳng d là tiếp tuyến của đường tròn tại B. AC,AD lần lượt cắt d tại P;Q.
a/ C/m tứ giác CPQD nội tiếp
b/ C/m trung tuyến AI của tam giác AQP vuông góc với CD
c/ Gọi E là tâm của đường tròn ngoại tiếp tam giác CPD. Khi đường kính CD thay đổi, điểm E di chuyển trên đường nào.
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO ngoại tiếp đường tròn
C. Tính CM, CN không phụ thuộc vào vị trí M
cho đường tròn tâm O đường kính AB cố định. Ax và Ay là hai tia thay đổi luôn tạo với nhau góc 60độ và lần lượt cắt đường tròn (O) tại M và N. Đường thẳng BN cắt Ax tại E, đường thẳng BM cắt Ay tại F. Gọi K là trung điểm của đoạn thẳng EF.
a. Chứng minh rằng đoạn thẳng EF có độ dài không đổi
b. Chứng minh rằng OMKN là tứ giác nội tiếp
c. Khi AMN là tam giác đều, gọi C là điểm trên đường tròn (O) khác A, khác N. Đường thẳng qua M và vuông góc với AC cắt NC tại D. Xác định vị trí của điểm C để diện tích am giác MCD là lớn nhất
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.