Cho x= 0 ta được: y2+ 3= 0 phương trình vô nghiệm.
Vậy (C) không có điểm chung nào với trục tung.
Chọn D.
Cho x= 0 ta được: y2+ 3= 0 phương trình vô nghiệm.
Vậy (C) không có điểm chung nào với trục tung.
Chọn D.
Mệnh đề nào sau đây đúng?
(1) Đường tròn (C1) : x2+ y2 – 2x +4y - 4= 0 có tâm I( 1; -2) bán kính R= 3.
(2) Đường tròn (C2) x2+ y2 – 5x +3y – 0,5= 0 có tâm bán I 5 2 ; - 3 2 kính R= 3.
A. Chỉ (1).
B. Chỉ (2).
C.cả hai
D. Không có.
Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: x 2 + y 2 + 4 3 x - 4 = 0 Tia Oy cắt (C) tại A(0;2). Lập phương trình đường tròn (C’), bán kính R’= 2 và tiếp xúc ngoài với C tại A.
Cho đường tròn (C) : x2+ y2-2ax – 2by + c= 0 (a2+ b2- c > 0) . Hỏi mệnh đề nào sau đây sai?
A. (C) có bán kính R= a 2 + b 2 - c .
B. (C) tiếp xúc với trục hoành khi và chỉ khi b2= R2.
C. (C) tiếp xúc với trục tung khi và chỉ khi a= R. .
D. (C) tiếp xúc với trục tung khi và chỉ khi b2= c.
trong mặt phẳng Oxy cho đường thẳng \(\Delta\) x-y=0. Đường tròn (C) có bán kính R=\(\sqrt{10}\) cắt \(\Delta\)tại 2 điểm A,B sao cho AB=4\(\sqrt{2}\). tiếp tuyến của (C) tại A, B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C)
Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y - 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 - 4x + 6y – 3 = 0
Cho đường tròn (C): x 2 + y 2 + 4x + 6y + 3 = 0 có tâm I và bán kính R là:
A. I(2;3), R = 10
B. I(2;3), R = 10
C. I(-2;-3), R = 10
D. I(-2;-3), R = 10
Cho đường tròn (C) có phương trình x 2 + y 2 + 4 x − 6 y − 3 = 0 . Khi đó đường tròn có tâm I và bán kính R với
A. I(4; -6), R = 4
B. I(-2; 3), R = 16
C.I(-4; 6), R = 4
D. I(-2; 3) , R = 4
cho đường thẳng d:x+y+2=0 và đường tròn (C): x^2+y^2-4x-2y=0. Gọi I là tâm đường tròn (C), M là điểm thuộc d. qua M kẻ tiếp tuyến MA với (C) và 1 cát tuyến cắt (C) tại B,C. Tìm tọa độ điểm M biết tam giác ABc vuông tại B và có diện tích bằng 5
Cho đường tròn (C) : x2+ y2+ 8x+ 6y+ 9= 0. Mệnh đề nào sau đây sai?
A. (C) không đi qua điểm O.
B. tâm I( -4; -3).
C.bán kính R= 4.
D. (C) đi qua điểm M(-1; 0) .