Cho đường thẳng d: y= 2x+3m-4 (m là tham số) 1) Tìm m để d đi qua điểm M(m^2;1) 2) Tìm m để d giao với trục hoành tại điểm có hoành độ lớn hơn 1 3) tìm m để d giao với đường thẳng denta: y=-3x+1-2m tại điểm K(x;y) nằm trên đường tròn tâm O bán kính căn 5
Cho đường thẳng d: y= 2x+3m-4 (m là tham số)
1) Tìm m để d đi qua điểm M(m^2;1)
2) Tìm m để d giao với trục hoành tại điểm có hoành độ lớn hơn 1
3) tìm m để d giao với đường thẳng denta: y=-3x+1-2m tại điểm K(x;y) nằm trên (0;căn 5 )
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d);y=2x+3m-4 ( m là tham số )
a, Tìm m để (d) cắt trục hoành tại điểm có hoành độ lớn hơn 1
b, tìm m để (d) cắt (d1) ; y=-3x+1-2m tại K (x,y) nằm trên đường tròn tâm O , bán kính \(\sqrt{5}\)
Trong mặt phẳng xOy cho đường thẳng (d) y= 2x + m -4 ( m là tham số)
a. Tìm m để đường thẳng (d) đi qua M( \(m^2\); 1)
b. Tìm m để đường thẳng cắt trục hoành tạo điểm có hoành độ >1.
c. Tìm m để đường thẳng cắt (\(\Delta\)) \(y=-3x+1-2m\) tại k (x ; y) nằm trên đường tròn ( O) bánh kính \(\sqrt{5}\)
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
1) Cho hàm số y=(m-3)x-2m+2(với m≠3 là tham số) có đồ thị hàm số là đường thẳng (d)
a.tìm m để hàm số trên cắt trục tung tại điểm có tung độ bằng -2
b tìm m để (d) song song với đường thẳng (d1):y=(3m+1)x+4
c. tìm m đề (d) cắt trục hoành tại điểm có hoành độ là số nguyên
2)cho hệ phuong trình 2x+y=3m+1
3x+2y=2m-3
a.giải hệ phương trình khi m=-1
với giá trị nào của m thì hệ phương trình có nghiệm(x;y)thoản mãn x<1 và y<6
Trong mặt phẳng tọa độ cho (d) : y = 2x + 3m - 4 ( m là tham số )
a) Tìm m để (d) đi qua A(m2;1)
b) Tìm m để (d) cắt Ox tại điểm có hoành độ lớn hơn 1
c) Tìm m để (d') : y = -3x + 1 - 2m cắt (d) tại K (x;y) nằm trên (O; 1)
Cho đường thẳng (d) y = ( m-1).x +2m+1
â) Tìm m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -3 . Vẽ đồ thị hàm số với m vừa tìm được và chứng tỏ giao điểm của đồ thị vừa tìm được với đường thẳng (d ') y=x+1 nằm trên trục hoành
b) Chứng tỏ (d) luôn đi qua điểm cố định với mọi m
c) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) đạt giá trị lớn nhất
Bài 1 : Cho 2 hàm số y= (2m-3)x+m-2 và y=(1-2m)x-m+3 có đồ thị là (d1) và (d2). Tìm m để (d2) cắt trục hoành tại điểm có hoành độ x=4.
Bài 2 : Cho đường thẳng (d) : y=(3k-5)x+k-1
a. tìm k để (d) và 2 đường thẳng y=-2x+3 ; y=x-6 đồng quy tại 1 điểm trên mặt phẳng tọa độ.
b. CM: đồ thị hàm số luôn đi qua 1 điểm cố định với mọi k. tìm điểm cố định ấy.