Chọn đáp án C.
Do tam giác ABC cân tại A nên AB = AC
Suy ra, A thuộc đường trung trực của đoạn thẳng BC.
Chọn đáp án C.
Do tam giác ABC cân tại A nên AB = AC
Suy ra, A thuộc đường trung trực của đoạn thẳng BC.
Cho đường tròn tâm O bán kính R và điểm A (khác O) ở trong đường tròn đó. Một đường thẳng d thay đổi, luôn đi qua A, cắt đường tròn đã cho tại hai điểm là B và C. Tìm quỹ tích trung điểm I của đoạn thẳng BC.
Cho đường tròn tâm O bán kính R và điểm A thuộc đường tròn. Trên tiếp tuyến tại A lấy 1 điểm K cố định. Một đường thẳng (d) thay đổi đi qua K và không đi qua tâm O cắt (O) tại B và C ( B nằm giữa C và K). Gọi M là trung điểm BC.
1.CM: A,O,M,K thuộc 1 đường tròn
2.Vẽ đường kính AN của đường tròn tâm O, đường thẳng qua A và vuông góc vứi BC cắt MN tại H.CM: tứ giác BHCN là hình bình hành.
3.CM: H là trực tâm tam giác ABC.
4. Khi đường thẳng (d) thay đổi và thỏa mãn điều kiện đề bài thì H di động trên đường thẳng nào
Cho đường tròn tâm O, bán kính R và một điểm A sao cho OA=2R. VẼ các tiếp tuyến AB,AC ( B,C) là các tiếp điểm. Đường thẳng OA cắt BC tại H, cắt cung nhỏ BC và cung lớn BC lần lượt tại I,K
a/ CM OA vuông góc với BC, HI=OA=R bình phương
b/ CM tam gaics ABC đều, tứ giác ABKC là hình thoi
c/ CHứng tỏ I là tâm đường tròn nội tiếp tam giác ABC. Tính theo R bán kính của đường tròn này.
d/ Vẽ cát tueyens bất kì AMN của đường tròn tâm O. Gọi E là tủng điểm MN. CHứng tỏ 5 điểm O,E,A,B,C cùng thuộc một đường tròn
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Cho tam giác ABC vuông tại A, đường cao AH. Trên BC lấy điểm M sao cho H là trung điểm của đoạn thẳng BM. AC cắt đường tròn đường kính CM tại E, EM cắt đường tròn tâm O đường kính BC tại F. Iva A name and mat phon
a) Chứng minh rằng AB // MF.
doi nhau. M và BC
b) Chứng minh rằng tứ giác ABFM là hình thoi. c) Kéo dài AM cắt đường tròn đường kính MC tại I (I +M)
Chứng minh rằng:AI. BO =AH.AC
Cho tam giác ABC vuông tại a có đường cao AH vẽ đường tròn tâm A, bán kính AH. Từ B và C kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm không nằm trên BC )
a/ CM : BD+CE=BC
b/CM : D, A, E thẳng hàng
c/CM : DE tiếp xúc với đường tròn đường kính BC
d/ Đường tròn đường kính BC cắt đường tròn tâm A tại M và N. MN cắt AH tại I. CM : I là trung điểm của AH
Mn ơi giúp mik câu d mik cảm ơn nhiều
Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp và K là tâm đường tròn bàng tiếp góc A của tam giác
a, Chứng minh bốn điểm B, C, I, K cùng thuộc đường tròn (O; IO) vói O là trung điểm của đoạn thẳng IK
b, Chứng minh AC là tiếp tuyến của (O)
c, Biết AB = AC = 20 cm và BC = 24 cm tính bán kính của (O)
Cho đoạn thẳng BC cố định . Lấy điểm A bất kì sao cho góc BAC nhọn.Đường tròn tâm O đường kính BC cắt AB,AC lần lượt tại M,N.Gọi H là giao của BN và CM , I là tâm đường tròn ngoại tiếp ΔMHN , OI cắt MN tại G.Chứng minh OM là tiếp tuyến của (I)
Cho đường tròn tâm O bán kính R , đường kính AB , lấy C thuộc đường đường tròn bất kì . Kẻ tiếp tuyến tại A của đường tròn . Tiếp tuyến này cắt tia BC tại D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E
â) CM: 4 điểm A,E, C, Ở cùng thuộc 1 đường tròn
b) CM = BC. BD = 4R2 va OE // BD
c) Đường thẳng kẻ qua O và vuông góc BC tại N cắt tia EC ở F. CM: BF là tiếp tuyến của đường tròn
đ) Gọi H là hình chiếu của C trên AB , AC cắt OE tại M . CM: Khi C di động trên đường tròn tâm O và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua 1 điểm cố định
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.