Cho đoạn thẳng AB và O là trung điểm của AB. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Lấy điểm C là điểm bất kì thuộc tia Ax khác điểm A. Tia CO cắt tia đối của tia đối của tia By tại D. Đường vuông góc với CO tại O cắt tia By tại E. Chứng minh rằng:
a) Tam giác OAC = tam giác OBD
b) Tam giác OCE = tam giác ODE
c) CE = AC + BE
a) ta có AC vuông góc AB (gt)
BD vuông góc AB (gt)
=> AC//BC
Xét tam giác OAC và tam giác OBD ta có
OA=OB ( O là trung điểm AB)
góc OAC= góc OBD ( =90)
góc ACO= góc ODB (2 góc so le trong và AC// BD)
-> tam giac OAC = tam giác OBD (g-c-g)
-> OC= OD ( 2 cạnh tương ứng)
Xét tam giác OCE và tam giác ODE ta có
OE=OE ( canh chung)
CO=OD ( cmt)
góc COE= góc EOD (=90)
-> tam giac OCE= tam giac ODE (c-g-c)
c) ta có
ED=EB+BD
AC=BD ( tam giác OAC= tam giác OBD)
-> ED= BE+AC
mà CE= ED ( tam giác OCE = tam giác ODE)
nên CE = BE+AC