Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường thẳng vuông góc với OC tại O cắt tia By ở D. C/m CD=AC+BD
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.
Gọi O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax và By vuông góc với AB. Trên tia Ax lấy điểm C bất kì , đường vuông góc với OC tại O cắt tia By ở D. C/minh: CD = AC + BD
Cho đoạn thẳng AB, O là trung điểm của AB, trên cùng 1 nửa mặt phẳng bờ AB vẽ các tia Ax và By vuông góc với AB. Gọi C là 1 điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng: CD=AC+BD
Cho đoạn thẳng AB, O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By tại D. Khi đó
A. CD=AC+BD
B. CD=AC-BD
C. AC=DC+BD
D. AC=BD-CD
Cho đoạn thẳng AB, O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By tại D. Khi đó
A. C D = A C + B D
B. C D = A C − B D
C. A C = D C + B D
D. A C = B D − C D
Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là 1 điểm thuộc tia Ax. Đường vuông góc với OC cắt By tại D. CMR CD = AC + BD